Python训练营打卡——DAY22(2025.5.11)

news2025/5/12 16:48:16

复习日

学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码

泰坦尼克号——来自灾难的机器学习

数据来源:

kaggle泰坦里克号人员生还预测


挑战

泰坦尼克号沉没是历史上最臭名昭著的海难之一。

1912年4月15日,在被普遍认为“永不沉没”的皇家邮轮泰坦尼克号的处女航中,它与冰山相撞沉没。不幸的是,船上没有足够的救生艇供所有人使用,导致2224名乘客和船员中1502人遇难。

虽然生存需要一些运气的因素,但似乎有些群体比其他群体更有可能生存下来。

在这个挑战中,我们要求您使用乘客数据(即姓名、年龄、性别、社会经济阶层等)建立一个预测模型来回答这个问题:“什么样的人更有可能生存?”

Kaggle 竞赛如何运作

  1. 参加比赛
    阅读挑战描述,接受比赛规则并获得比赛数据集的访问权限。
  2. 开始工作
    下载数据,在本地或 Kaggle Notebooks(我们的无需设置、可定制的 Jupyter Notebooks 环境,带有免费 GPU)上构建模型并生成预测文件。
  3. 提交
    您的预测并将其作为提交上传到 Kaggle 并获得准确度分数。
  4. 查看排行榜
    查看您的模型在我们的排行榜上与其他 Kaggler 的排名。
  5. 提高您的分数
    查看讨论论坛,查找来自其他竞争对手的大量教程和见解。

我将在本次比赛中使用哪些数据?

在本次比赛中,您将获得两个相似的数据集,其中包括乘客信息,如姓名、年龄、性别、社会经济阶层等。一个数据集的标题为train.csv,另一个数据集的标题为test.csv

Train.csv将包含机上部分乘客(确切地说是 891 人)的详细信息,重要的是,将揭示他们是否幸存,也称为“地面真相”。

数据test.csv集包含类似的信息,但并未披露每位乘客的“基本事实”。你的任务就是预测这些结果。

使用您在数据中发现的模式train.csv,预测机上其他 418 名乘客(在 中找到test.csv)是否幸存。

查看“数据”选项卡,进一步探索数据集。一旦你认为自己创建了一个具有竞争力的模型,就可以将其提交到 Kaggle,看看你的模型在我们的排行榜上与其他 Kaggle 选手的排名。

如何向 Kaggle 提交你的预测

一旦您准备好提交并进入排行榜:

  1. 点击“提交预测”按钮

  2. 上传提交文件格式的 CSV 文件。您每天最多可以提交 10 份。

提交文件格式:

PassengerId您应该提交一个包含 418 个条目和一个标题行的 csv 文件。如果您提交的数据包含多余的列(超过和Survived)或行,则会显示错误。

该文件应该恰好有 2 列:

  • PassengerId(不分先后顺序)
  • Survived(包含您的二进制预测:1 表示幸存,0 表示死亡)

1. 导入包

import warnings
warnings.filterwarnings("ignore") #忽略警告信息

# 数据处理清洗包
import pandas as pd
import numpy as np
import random as rnd

# 可视化包
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

# 机器学习算法相关包
from sklearn.linear_model import LogisticRegression, Perceptron, SGDClassifier
#逻辑回归、感知机、随机梯度下降法
from sklearn.svm import SVC, LinearSVC
#支持向量机、线性支持向量机
from sklearn.neighbors import KNeighborsClassifier
#最近邻
from sklearn.naive_bayes import GaussianNB
#朴素贝叶斯
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier


2. 加载数据集

train_df = pd.read_csv('./titanic/train.csv')
test_df = pd.read_csv('./titanic/test.csv')
combine = [train_df, test_df] # 合并数据
#这只是放到一个列表,以便后续合并,现在还没合并
#combined_df = pd.concat([train_df, test_df], axis=1, ignore_index=True)这才是合并
#combine.head()会报错,因为列表没有head方法

3. 描述性统计分析

# 获取所有特征名
print(train_df.columns.values)

# 预览数据
train_df.head()

train_df.tail()

print(train_df.isnull().sum())
# 返回每列(特征)中的缺失值数量
print('_'*40)
#打印一行分隔线,其中包含40个连续的下划线字符
test_df.isnull().sum()

train_df.info()
print('_'*40)
test_df.info()
#714 non-null意为714个非空值
# RangeIndex: 891 entries, 0 to 890 表示891行数据
# Data columns (total 12 columns) 表示12列(11个特征 1个标签)

round(train_df.describe(percentiles=[.5, .6, .7, .75, .8, .9, .99]),2)
#describe(percentiles=[.5, .6, .7, .75, .8, .9, .99])指定百分位描述
#round()保留2位小数
#describe()方法只描述数值型数据,12个特征中有5个object所以不表示

train_df.describe(include=['O'])
# 获取非数值型(对象型)列的描述性统计信息的方法
# count:非缺失值的数量。
# unique:唯一值的数量,表示多少种数值
# top:出现次数最多的值。
# freq:出现次数最多的值的频数。

4. 基于数据分析的假设

# 针对Pclass和Survived进行分类汇总
# pclass是票价等级
train_df[['Pclass','Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived', ascending=False)
# groupby是分类汇总函数,这个功能类似于数据透视表,选择分类列和汇总列
# sort_values(by='Survived', ascending=False)意思为根据survive这一列降序排序
# 另一种写法为pd.DataFrame(train_df.groupby('Pclass', as_index=False)['Survived'].mean()).sort_values(by='Survived', ascending=False)

train_df[['Sex','Survived']].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived', ascending=False)

train_df[['SibSp','Survived']].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived',ascending=False)

train_df[['Parch','Survived']].groupby(['Parch'], as_index=False).mean().sort_values(by='Survived',ascending=False)

5. 可视化数据分析

g = sns.FacetGrid(train_df, col='Survived')  #FacetGrid(data, row, col, hue, height, aspect, palette, ...)
# col='Survived'指定了将数据分成两列,分别对应于Survived列的0和1

g.map(plt.hist, 'Age', bins=20)
# plt.hist来绘制直方图,并传递了'Age'列作为数据,,bins=20指定了直方图的分箱数

#grid = sns.FacetGrid(train_df, col='Survived', row='Pclass', size=2.5, aspect=1.6)
grid = sns.FacetGrid(train_df, col='Pclass', hue='Survived') 
grid.map(plt.hist, 'Age', alpha=0.5, bins=20)
grid.add_legend();

grid = sns.FacetGrid(train_df, col='Embarked')
grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep')
grid.add_legend();

grid = sns.FacetGrid(train_df, col='Embarked', hue='Survived', palette={0: 'b', 1: 'r'})
grid.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None)
grid.add_legend()

1
print("Before", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape)

train_df = train_df.drop(['Ticket', 'Cabin'], axis=1)
test_df = test_df.drop(['Ticket', 'Cabin'], axis=1)
combine = [train_df, test_df]

"After", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape

train_df['Name'].head(10)

# 使用正则表达式提取Title特征
for dataset in combine:
    dataset['Title'] = dataset.Name.str.extract('([A-Za-z]+)\.', expand=False)
# 从姓名字符串中匹配一个或多个字母,并且以句点 (.) 结尾的部分,这通常是表示称号的部分
# 提取的称号被存储在一个新的 Title 列中
pd.crosstab(train_df['Title'], train_df['Sex']).sort_values(by='female', ascending=False)  # pd.crosstab列联表
#这部分代码使用 pd.crosstab 来创建一个列联表,用于计算不同称号 和性别之间的关系
#crosstab 会统计每个组合的数量,并返回一个交叉表。

combine
#还没有按列合并,还是2个数据表

# 可以用更常见的名称替换许多标题或将它们归类为稀有
for dataset in combine:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',
                                                 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')

    dataset['Title'] = dataset['Title'].replace(['Mlle', 'Ms'], 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
    
train_df[['Title', 'Survived']].groupby(['Title'], as_index=False).mean()

train_df.head()

# 将分类标题转换为序数
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
for dataset in combine:
    dataset['Title'] = dataset['Title'].map(title_mapping)  
    # 将序列中的每一个元素,输入函数,最后将映射后的每个值返回合并,得到一个迭代器
    dataset['Title'] = dataset['Title'].fillna(0)  

train_df.head()

# 现在可以从训练和测试数据集中删除Name特征以及训练集中的PassengerId 特征
train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
test_df = test_df.drop(['Name'], axis=1)
combine = [train_df, test_df]
train_df.shape, test_df.shape

# 转换分类特征Sex
for dataset in combine:
    dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int)  #男性赋值为0,女性赋值为1,并转换为整型数据

train_df.head()

# 绘制Age, Pclass, Sex复合直方图
#grid = sns.FacetGrid(train_df, row='Pclass', col='Sex', size=2.2, aspect=1.6)
grid = sns.FacetGrid(train_df, col='Pclass', hue='Sex')
grid.map(plt.hist, 'Age', alpha=.5, bins=20)
grid.add_legend()

# 创建空数组
guess_ages = np.zeros((2,3))
guess_ages

# 遍历 Sex (0 或 1) 和 Pclass (1, 2, 3) 来计算六种组合的 Age 猜测值
for dataset in combine:
    # 第一个for循环计算每一个分组的Age预测值
    for i in range(0, 2):
        for j in range(0, 3):
            guess_df = dataset[(dataset['Sex'] == i) & \
                                  (dataset['Pclass'] == j+1)]['Age'].dropna()

            # age_mean = guess_df.mean()
            # age_std = guess_df.std()
            # age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std)

            age_guess = guess_df.median()

            # 将随机年龄浮点数转换为最接近的 0.5 年龄(四舍五入)
            guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5
            
    # 第二个for循环对空值进行赋值        
    for i in range(0, 2):
        for j in range(0, 3):
            dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1),\
                    'Age'] = guess_ages[i,j]

    dataset['Age'] = dataset['Age'].astype(int)
train_df.head()

# 创建了一个新的列:年龄段AgeBand,并确定其与Survived的相关性
# 一般在建立分类模型时,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险
train_df['AgeBand'] = pd.cut(train_df['Age'], 5)  # 将年龄分割为5段,等距分箱
train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True)

# 将这些年龄区间替换为序数
for dataset in combine:    
    dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0
    dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
    dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
    dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
    dataset.loc[ dataset['Age'] > 64, 'Age'] = 4
train_df.head()

train_df = train_df.drop(['AgeBand'], axis=1)  # 删除训练集中的AgeBand特征
combine = [train_df, test_df]
train_df.head()
test_df

for dataset in combine:
    dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1

train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean().sort_values(by='Survived', ascending=False)

# 创建新特征IsAlone
for dataset in combine:
    dataset['IsAlone'] = 0
    dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1

train_df[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean()

train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
combine = [train_df, test_df]

train_df.head(20)

# 创建Age*Pclass特征以此用来结合Age和Pclass变量
for dataset in combine:
    dataset['Age*Pclass'] = dataset.Age * dataset.Pclass

train_df.loc[:, ['Age*Pclass', 'Age', 'Pclass']].head(10)
train_df[['Age*Pclass', 'Survived']].groupby(['Age*Pclass'], as_index=False).mean()

freq_port = train_df.Embarked.dropna().mode()[0] 
# mode() 计算众数,这里只有一个值,加不加[0] 都一样,一般返回的众数是每一列的众数构成的series
for dataset in combine:
    dataset['Embarked'] = dataset['Embarked'].fillna(freq_port)
    
train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean().sort_values(by='Survived', ascending=False)

# 同样转换分类特征为序数
for dataset in combine:
    dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int)

train_df.head()

# 测试集中Fare有一个缺失值,用中位数进行填补
test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True)
test_df.head()

plt.hist(train_df['Fare'])

# 对票价进行连续数据离散化
train_df['FareBand'] = pd.qcut(train_df['Fare'], 4)  # 根据样本分位数进行分箱,等频分箱
train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().sort_values(by='FareBand', ascending=True)

for dataset in combine:
    dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
    dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
    dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare']   = 2
    dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3
    dataset['Fare'] = dataset['Fare'].astype(int)

train_df = train_df.drop(['FareBand'], axis=1)
combine = [train_df, test_df]
    
train_df.head(10)

test_df.head(10)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2374076.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实战项目4(05)

​目录 任务场景一 【sw1配置】 任务场景二 【sw1配置】 【sw2配置】 任务场景一 按照下图完成网络拓扑搭建和配置 任务要求&#xff1a; 1、在交换机SW1的E0/0/1端口进行设置&#xff0c;实现允许最多两个电脑可以正常进行通信。 2、在交换机SW1的E0/0/2端口进行设置&…

C++学习之STL学习

在经过前面的简单的C入门语法的学习后&#xff0c;我们开始接触C最重要的组成部分之一&#xff1a;STL 目录 STL的介绍 什么是STL STL的历史 UTF-8编码原理&#xff08;了解&#xff09; UTF-8编码原理 核心编码规则 规则解析 编码步骤示例 1. 确定码点范围 2. 转换为…

3. 仓颉 CEF 库封装

文章目录 1. capi 使用说明2. Cangjie CEF2. 1实现目标 3. 实现示例 1. capi 使用说明 根据上一节 https://blog.csdn.net/qq_51355375/article/details/147880718?spm1011.2415.3001.5331 所述&#xff0c; cefcapi 是libcef 共享库导出一个 C API, 而以源代码形式分发的 li…

LabVIEW多通道并行数据存储系统

在工业自动化监测、航空航天测试、生物医学信号采集等领域&#xff0c;常常需要对多个传感器通道的数据进行同步采集&#xff0c;并根据后续分析需求以不同采样率保存特定通道组合。传统单线程数据存储方案难以满足实时性和资源利用效率的要求&#xff0c;因此设计一个高效的多…

谷歌在即将举行的I/O大会之前,意外泄露了其全新设计语言“Material 3 Expressive”的细节

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

十三、基于大模型的在线搜索平台——整合function calling流程

基于大模型的在线搜索平台——整合function calling流程 一、function calling调用总结 上篇文章已经实现了信息抓取能力&#xff0c;并封装成了函数。现在最后一步将能力转换为大模型可以调用的能力&#xff0c;实现搜索功能就可以了。这篇主要实现大模型的function calling能…

力扣70题解

记录 2025.5.8 题目: 思路&#xff1a; 1.初始化&#xff1a;p 和 q 初始化为 0&#xff0c;表示到达第 0 级和第 1 级前的方法数。r 初始化为 1&#xff0c;表示到达第 1 级台阶有 1 种方法。 2.循环迭代&#xff1a;从第 1 级到第 n 级台阶进行迭代&#xff1a; p 更新为前…

电商双11美妆数据分析

1、初步了解 2.2 缺失值处理 通过上面观察数据发现sale_count,comment_count 存在缺失值,先观察存在缺失值的行的基本情况 2.3 数据挖掘寻找新的特征 给出各个关键词的分类类别 由title新生成两列类别 对是否是男性专用进行分析并新增一列 对每个产品总销量新增销售额这一列

24、TypeScript:预言家之书——React 19 类型系统

一、预言家的本质 "TypeScript是魔法世界的预言家之书&#xff0c;用静态类型编织代码的命运轨迹&#xff01;" 霍格沃茨符文研究院的巫师挥动魔杖&#xff0c;类型注解与泛型的星轨在空中交织成防护矩阵。 ——基于《国际魔法联合会》第12号类型协议&#xff0c;Ty…

第8章-1 查询性能优化-优化数据访问

上一篇&#xff1a;《第7章-3 维护索引和表》 在前面的章节中&#xff0c;我们介绍了如何设计最优的库表结构、如何建立最好的索引&#xff0c;这些对于提高性能来说是必不可少的。但这些还不够——还需要合理地设计查询。如果查询写得很糟糕&#xff0c;即使库表结构再合理、索…

PCL点云按指定方向进行聚类(指定类的宽度)

需指定方向和类的宽度。测试代码如下&#xff1a; #include <iostream> #include <fstream> #include <vector> #include <string> #include <pcl/point_types.h> #include <pcl/point_cloud.h> #include <pcl/visualization/pcl_visu…

C#对SQLServer增删改查

1.创建数据库 2.SqlServerHelper using System; using System.Collections.Generic; using System.Data.SqlClient; using System.Data; using System.Linq; using System.Text; using System.Threading.Tasks;namespace WindowsFormsApp1 {internal class SqlServerHelper{//…

模拟太阳系(C#编写的maui跨平台项目源码)

源码下载地址&#xff1a;https://download.csdn.net/download/wgxds/90789056 本资源为用C#编写的maui跨平台项目源码&#xff0c;使用Visual Studio 2022开发环境&#xff0c;基于.net8.0框架&#xff0c;生成的程序为“模拟太阳系运行”。经测试&#xff0c;生成的程序可运行…

蓝桥杯14届 数三角

问题描述 小明在二维坐标系中放置了 n 个点&#xff0c;他想在其中选出一个包含三个点的子集&#xff0c;这三个点能组成三角形。然而这样的方案太多了&#xff0c;他决定只选择那些可以组成等腰三角形的方案。请帮他计算出一共有多少种选法可以组成等腰三角形&#xff1f; 输…

HTML12:文本框和单选框

表单元素格式 属性说明type指定元素的类型。text、password、 checkbox、 radio、submit、reset、file、hidden、image 和button&#xff0c;默认为textname指定表单元素的名称value元素的初始值。type为radio时必须指定一个值size指定表单元素的初始宽度。当type为text 或pas…

机器人厨师上岗!AI在餐饮界掀起新风潮!

想要了解人工智能在其他各个领域的应用&#xff0c;可以查看下面一篇文章 《AI在各领域的应用》 餐饮业是与我们日常生活息息相关的行业&#xff0c;而人工智能&#xff08;AI&#xff09;正在迅速改变这个传统行业的面貌。从智能点餐到食材管理&#xff0c;再到个性化推荐&a…

MySQL开篇

文章目录 一、前置知识1. MySQL的安装2. 前置一些概念知识 二、MySQL数据库操作2.1 概念2.2 数据库的操作2.2.1创建数据库命令2.2.2 查看数据库2.2.3 选中数据库2.2.4 删除数据库 三、MySQL数据表操作3.1 概念3.2 数据表的操作3.2.1 创建表 一、前置知识 1. MySQL的安装 MySQ…

Linux电脑本机使用小皮面板集成环境开发调试WEB项目

开发调试WEB项目&#xff0c;有时开发环境配置繁琐&#xff0c;可以使用小皮面板集成环境。 小皮面板官网&#xff1a; https://www.xp.cn/1.可以使用小皮面板安装脚本一键安装。登陆小皮面板管理后台 2.在“软件商店”使用LNMP一键部署集成环境。 3.添加网站&#xff0c;本…

问题及解决01-面板无法随着窗口的放大而放大

在MATLAB的App Designer中&#xff0c;默认情况下&#xff0c;组件的位置是固定的&#xff0c;不会随着父容器的大小变化而改变。问题图如下图所示。 解决&#xff1a; 为了让Panel面板能够随着UIFigure父容器一起缩放&#xff0c;需要使用布局管理器&#xff0c;我利用 MATLA…

操作系统原理实验报告

操作系统原理课程的实验报告汇总 实验三&#xff1a;线程的创建与撤销 实验环境&#xff1a;计算机一台&#xff0c;内装有VC、office等软件 实验日期&#xff1a;2024.4.11 实验要求&#xff1a; 1.理解&#xff1a;Windows系统调用的基本概念&#xff0c;进程与线程的基…