VSCode写java时常用的快捷键

news2025/7/19 4:54:22

首先得先安好java插件

1、获取返回值

这里是和idea一样的快捷键的,都是xxxx.var
比如现在我new一个对象
就输入

new MbDo().var
// 点击回车即可变成下面的
 // MbDo mbDo = new MbDo()

//以此类推get方法也可获取
mbDo.getMc().var
// 点击回车即可变成下面的
// String mc = mbDo.getMc();

2、进入某个类

长按ctrl,然后左键点击此类
在这里插入图片描述

3、获取某个类的引用、实现、父类

随便打开某个java文件,单击类名或者双击类名都可以(此处点击BaseController),点击右键,发现就已经有快捷键的了
在这里插入图片描述
关闭的话就是点右上角的x关闭即可

在这里插入图片描述

也可以用此种方式获取成员变量的实现类
同样先单击,然后快捷键
在这里插入图片描述
获取某个类的子类:实际上就是上面“实现”的快捷键,等于是同一个功能快捷键

在这里插入图片描述

4、清除控制台信息

选中终端,然后点右边的…最后点清除终端
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2336163.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用 Node.js、Express 和 React 构建强大的 API

了解如何使用 Node.js、Express 和 React 创建一个强大且动态的 API。这个综合指南将引导你从设置开发环境开始,到集成 React 前端,并利用 APIPost 进行高效的 API 测试。无论你是初学者还是经验丰富的开发者,这篇文章都适合你。 今天&#…

深度学习入门:神经网络的学习

目录 1 从数据中学习1.1 数据驱动1.2 训练数据和测试数据 2损失函数2.1 均方误差2.2 交叉熵误差2.3 mini-batch学习2.4 mini-batch版交叉熵误差的实现2.5 为何要设定损失函数 3 数值微分3.1 数值微分3.3 偏导数 4 梯度4.1 梯度法4.2 神经网络的梯度 5 学习算法的实现5.1 2层神经…

OSI参考模型和TCP/IP模型

1.OSI参考模型 OSI模型: OSI参考模型有7层,自下而上依次为物理层,数据链路层,网络层,传输层,会话层,表示层,应用层。(记忆口诀:物联网叔会用)。低…

人工智能中的卷积神经网络(CNN)综述

文章目录 前言 1. CNN的基本原理 1.1 卷积层 1.2 池化层 1.3 全连接层 2. CNN的发展历程 2.1 LeNet-5 2.2 AlexNet 2.3 VGGNet 2.4 ResNet 3. CNN的主要应用 3.1 图像分类 3.2 目标检测 3.3 语义分割 3.4 自然语言处理 4. 未来研究方向 4.1 模型压缩与加速 4.2 自监督学习 4.3 …

WordPress - 此站点出现严重错误

本篇讲 当WordPress出现 此站点出现严重错误 时,该如何解决。 目录 1,现象 2, FAQ 3,管理Menu无法打开 下面是详细内容。 1,现象 此站点出现严重错误(このサイトで重大なエラーが発生しました&#x…

在pycharm中搭建yolo11分类检测系统1--PyQt5学习(一)

实验条件:pycharm24.3autodlyolov11环境PyQt5 如果pycharm还没有配PyQt5的话就先去看我原先写的这篇博文: PyQT5安装搭配QT DesignerPycharm)-CSDN博客 跟练参考文章: 目标检测系列(四)利用pyqt5实现yo…

【经验记录贴】使用配置文件提高项目的可维护性

mark一下。 整体修改前后如下: 课题: 在项目中有一个支持的文件类型的FILE_TYPE的定义, 这个是写死在主程序中,每次增加可以支持的文件类型的时候,都需要去修改主程序中这个FILGE_TYPE的定义。 主程序修改其实不太花时…

SOME/IP中”客户端消费“及”服务端提供”的解析

先上结论 AREthAddConsumedEventGroup-->客户端的函数-->谁调用 Consumed函数,谁就是消费者 AREthAddProvidedEventGroup-->服务端的函数-->谁调用 Provided函数,谁就是服务端 Server 端:AREthAddProvidedEventGroup → 声明 &…

Linux 深入浅出信号量:从线程到进程的同步与互斥实战指南

知识点1【信号量概述】 信号量是广泛用于进程和线程间的同步和互斥。信号量的本质 是一个非负的整数计数器,它被用来控制对公共资源的访问 当信号量值大于0的时候,可以访问,否则将阻塞。 PV原语对信号量的操作,一次P操作使信号…

Oracle数据库数据编程SQL<9.1 数据库逻辑备份和迁移exp和imp之导出、导入>

EXP (Export) 和 IMP (Import) 是 Oracle 提供的传统数据导出导入工具,用于数据库逻辑备份和迁移。尽管在较新版本中已被 Data Pump (EXPDP/IMPDP) 取代,但在某些场景下仍然有用。 目录 一、EXP 导出工具 1. 基本语法 2. 常用参数说明 3. 导出模式 3.1 表模式导出 3.2 用…

DotnetCore开源库SampleAdmin源码编译

1.报错: System.Net.Sockets.SocketException HResult0x80004005 Message由于目标计算机积极拒绝,无法连接。 SourceSystem.Net.Sockets StackTrace: 在 System.Net.Sockets.Socket.AwaitableSocketAsyncEventArgs.ThrowException(SocketError error, C…

.Net 9 webapi使用Docker部署到Linux

参考文章连接: https://www.cnblogs.com/kong-ming/p/16278109.html .Net 6.0 WebApi 使用Docker部署到Linux系统CentOS 7 - 长白山 - 博客园 项目需要跨平台部署,所以就研究了一下菜鸟如何入门Net跨平台部署,演示使用的是Net 9 webAPi Li…

PyTorch 根据官网命令行无法安装 GPU 版本 解决办法

最近遇到一个问题,PyTorch 官网给出了 GPU 版本的安装命令,但安装成功后查看版本,仍然是 torch 2.6.0cpu 1. 清理现有 PyTorch 安装 经过探索发现,需要同时卸载 conda 和 pip 安装的 torch。 conda remove pytorch torchvision …

PHP防火墙代码,防火墙,网站防火墙,WAF防火墙,PHP防火墙大全

PHP防火墙代码,防火墙,网站防火墙,WAF防火墙,PHP防火墙大全 资源宝整理分享&#xff1a;https://www.htple.net PHP防火墙&#xff08;作者&#xff1a;悠悠楠杉&#xff09; 验证测试&#xff0c;链接后面加上?verify_cs1后可以自行测试 <?php //复制保存zzwaf.php$we…

使用 Vitis Model Composer 生成 FPGA IP 核

本文将逐步介绍如何使用 Vitis Model Composer 生成 FPGA IP 核&#xff0c;从建模到部署。 在当今快节奏的世界里&#xff0c;技术正以前所未有的速度发展&#xff0c;FPGA 设计也不例外。高级工具层出不穷&#xff0c;加速着开发进程。传统上&#xff0c;FPGA 设计需要使用硬…

BERT、T5、ViT 和 GPT-3 架构概述及代表性应用

BERT、T5、ViT 和 GPT-3 架构概述 1. BERT&#xff08;Bidirectional Encoder Representations from Transformers&#xff09; 架构特点 基于 Transformer 编码器&#xff1a;BERT 使用多层双向 Transformer 编码器&#xff0c;能够同时捕捉输入序列中每个词的左右上下文信息…

倚光科技:以创新之光,雕琢全球领先光学设计公司

在光学技术飞速发展的当下&#xff0c;每一次突破都可能为众多领域带来变革性的影响。而倚光&#xff08;深圳&#xff09;科技有限公司&#xff0c;作为光学设计公司的一颗璀璨之星&#xff0c;正以其卓越的创新能力和深厚的技术底蕴&#xff0c;引领着光学设计行业的发展潮流…

数据结构(六)——红黑树及模拟实现

目录 前言 红黑树的概念及性质 红黑树的效率 红黑树的结构 红黑树的插入 变色不旋转 单旋变色 双旋变色 插入代码如下所示&#xff1a; 红黑树的查找 红黑树的验证 红黑树代码如下所示&#xff1a; 小结 前言 在前面的文章我们介绍了AVL这一棵完全二叉搜索树&…

解决 Vue 中 input 输入框被赋值后,无法再修改和编辑的问题

目录 需求&#xff1a; 出现 BUG&#xff1a; Bug 代码复现 解决问题&#xff1a; 解决方法1&#xff1a; 解决方法2 关于 $set() 的补充&#xff1a; 需求&#xff1a; 前段时间&#xff0c;接到了一个需求&#xff1a;在选择框中选中某个下拉菜单时&#xff0c;对应的…

【差分隐私相关概念】瑞丽差分隐私(RDP)-瑞丽散度约束了贝叶斯因子后验变化

分步解释和答案&#xff1a; 在Rnyi差分隐私&#xff08;RDP&#xff09;框架中&#xff0c;通过贝叶斯因子和Rnyi散度的关系可以推导出关于后验变化的概率保证。以下是关键步骤的详细解释&#xff1a; 1. 贝叶斯因子的定义与分解 设相邻数据集 D D D 和 D ′ D D′&#x…