分步解释和答案:
在Rényi差分隐私(RDP)框架中,通过贝叶斯因子和Rényi散度的关系可以推导出关于后验变化的概率保证。以下是关键步骤的详细解释:
1. 贝叶斯因子的定义与分解
设相邻数据集
D
D
D 和
D
′
D'
D′,机制
f
f
f 的输出为随机变量
X
∼
f
(
D
)
=
P
X \sim f(D) = P
X∼f(D)=P 或
X
∼
f
(
D
′
)
=
Q
X \sim f(D') = Q
X∼f(D′)=Q。
根据贝叶斯定理,后验概率比(即贝叶斯因子)定义为:
R
post
(
D
,
D
′
)
=
p
(
D
∣
X
)
p
(
D
′
∣
X
)
=
p
(
X
∣
D
)
p
(
D
)
p
(
X
∣
D
′
)
p
(
D
′
)
.
R_{\text{post}}(D, D') = \frac{p(D \mid X)}{p(D' \mid X)} = \frac{p(X \mid D) p(D)}{p(X \mid D') p(D')}.
Rpost(D,D′)=p(D′∣X)p(D∣X)=p(X∣D′)p(D′)p(X∣D)p(D).
其中:
- p ( D ) p(D) p(D) 和 p ( D ′ ) p(D') p(D′) 是数据集的先验概率,
- p ( X ∣ D ) = P ( X ) p(X \mid D) = P(X) p(X∣D)=P(X) 和 p ( X ∣ D ′ ) = Q ( X ) p(X \mid D') = Q(X) p(X∣D′)=Q(X) 是似然函数。
先验概率比为:
R
prior
(
D
,
D
′
)
=
p
(
D
)
p
(
D
′
)
.
R_{\text{prior}}(D, D') = \frac{p(D)}{p(D')}.
Rprior(D,D′)=p(D′)p(D).
将两者相除,得到似然比:
R
post
R
prior
=
p
(
X
∣
D
)
p
(
X
∣
D
′
)
=
P
(
X
)
Q
(
X
)
.
\frac{R_{\text{post}}}{R_{\text{prior}}} = \frac{p(X \mid D)}{p(X \mid D')} = \frac{P(X)}{Q(X)}.
RpriorRpost=p(X∣D′)p(X∣D)=Q(X)P(X).
2. 期望与Rényi散度的联系
目标是计算在分布
P
P
P 下,似然比的
(
α
−
1
)
(\alpha - 1)
(α−1) 阶矩:
E
P
[
(
R
post
R
prior
)
α
−
1
]
=
E
P
[
(
P
(
X
)
Q
(
X
)
)
α
−
1
]
.
\mathbb{E}_P\left[ \left( \frac{R_{\text{post}}}{R_{\text{prior}}} \right)^{\alpha - 1} \right] = \mathbb{E}_P\left[ \left( \frac{P(X)}{Q(X)} \right)^{\alpha - 1} \right].
EP[(RpriorRpost)α−1]=EP[(Q(X)P(X))α−1].
根据期望的定义:
E
P
[
(
P
Q
)
α
−
1
]
=
∫
P
(
x
)
(
P
(
x
)
Q
(
x
)
)
α
−
1
d
x
=
∫
P
(
x
)
α
Q
(
x
)
1
−
α
d
x
.
\mathbb{E}_P\left[ \left( \frac{P}{Q} \right)^{\alpha - 1} \right] = \int P(x) \left( \frac{P(x)}{Q(x)} \right)^{\alpha - 1} dx = \int P(x)^\alpha Q(x)^{1 - \alpha} dx.
EP[(QP)α−1]=∫P(x)(Q(x)P(x))α−1dx=∫P(x)αQ(x)1−αdx.
3. Rényi散度的定义
Rényi散度
D
α
(
P
∥
Q
)
D_\alpha(P \parallel Q)
Dα(P∥Q) 的定义为:
D
α
(
P
∥
Q
)
=
1
α
−
1
log
∫
P
(
x
)
α
Q
(
x
)
1
−
α
d
x
.
D_\alpha(P \parallel Q) = \frac{1}{\alpha - 1} \log \int P(x)^\alpha Q(x)^{1 - \alpha} dx.
Dα(P∥Q)=α−11log∫P(x)αQ(x)1−αdx.
因此,上述积分可表示为:
∫
P
(
x
)
α
Q
(
x
)
1
−
α
d
x
=
exp
(
(
α
−
1
)
D
α
(
P
∥
Q
)
)
.
\int P(x)^\alpha Q(x)^{1 - \alpha} dx = \exp\left( (\alpha - 1) D_\alpha(P \parallel Q) \right).
∫P(x)αQ(x)1−αdx=exp((α−1)Dα(P∥Q)).
4. 等式链的完成
结合上述步骤:
E
P
[
(
R
post
R
prior
)
α
−
1
]
=
exp
(
(
α
−
1
)
D
α
(
P
∥
Q
)
)
.
\mathbb{E}_P\left[ \left( \frac{R_{\text{post}}}{R_{\text{prior}}} \right)^{\alpha - 1} \right] = \exp\left( (\alpha - 1) D_\alpha(P \parallel Q) \right).
EP[(RpriorRpost)α−1]=exp((α−1)Dα(P∥Q)).
进一步,当在分布
Q
Q
Q 下计算时:
E
Q
[
(
P
(
X
)
Q
(
X
)
)
α
]
=
∫
Q
(
x
)
(
P
(
x
)
Q
(
x
)
)
α
d
x
=
∫
P
(
x
)
α
Q
(
x
)
1
−
α
d
x
,
\mathbb{E}_Q\left[ \left( \frac{P(X)}{Q(X)} \right)^\alpha \right] = \int Q(x) \left( \frac{P(x)}{Q(x)} \right)^\alpha dx = \int P(x)^\alpha Q(x)^{1 - \alpha} dx,
EQ[(Q(X)P(X))α]=∫Q(x)(Q(x)P(x))αdx=∫P(x)αQ(x)1−αdx,
这与
E
P
\mathbb{E}_P
EP 的结果一致。因此:
E
Q
[
P
(
x
)
α
Q
(
x
)
1
−
α
]
=
exp
(
(
α
−
1
)
D
α
(
P
∥
Q
)
)
.
\mathbb{E}_Q\left[ P(x)^\alpha Q(x)^{1 - \alpha} \right] = \exp\left( (\alpha - 1) D_\alpha(P \parallel Q) \right).
EQ[P(x)αQ(x)1−α]=exp((α−1)Dα(P∥Q)).
5. 结论
Rényi散度
D
α
(
P
∥
Q
)
D_\alpha(P \parallel Q)
Dα(P∥Q) 直接约束了贝叶斯因子的后验变化:
E
P
[
(
R
post
R
prior
)
α
−
1
]
=
exp
(
(
α
−
1
)
D
α
(
P
∥
Q
)
)
.
\mathbb{E}_P\left[ \left( \frac{R_{\text{post}}}{R_{\text{prior}}} \right)^{\alpha - 1} \right] = \exp\left( (\alpha - 1) D_\alpha(P \parallel Q) \right).
EP[(RpriorRpost)α−1]=exp((α−1)Dα(P∥Q)).
这表明,RDP的隐私保证通过限制后验概率比的矩,确保了攻击者无法通过观测结果
X
X
X 显著区分数据集
D
D
D 和
D
′
D'
D′。
关键点总结:
- 贝叶斯因子分解为似然比与先验比的乘积。
- 似然比的 ( α − 1 ) (\alpha - 1) (α−1) 阶矩与Rényi散度直接相关。
- Rényi散度的指数形式量化了后验变化的概率界限。