多线程(初阶六:单例模式)

news2025/6/15 6:18:06

目录

一、单例模式的简单介绍

二、饿汉模式

三、懒汉模式

四、饿汉模式和懒汉模式的线程安全问题分析

1、饿汉模式(线程安全)

2、懒汉模式(线程不安全)

解决懒汉模式的线程安全问题

①给写操作打包成原子

②去除冗余操作

③存在指令重排序的问题

3、解决懒汉模式线程安全问题的最终代码:


一、单例模式的简单介绍

单例模式是一种设计模式,其中设计模式是软性的规定,与它关联的框架是硬性的规定,这些都是大佬已经设计好了的,即使是代码写的不是很好的菜鸡,按照这种模式也能写出还行的代码。类似象棋中的棋谱,即使你是新手,但按着棋谱走,你的棋力也不会太差。

单例 = 单个实例(对象)某个类,在一个线程中,只应该创建一个对象(原则上不应该有多个),这时就使用单例模式,就可以对我们的代码进行一个更严格的校验和检查

那么,怎么保证这一个对象唯一呢?

其一方法,可以通过“君子约定”,写一个文档,规定这个类只能有唯一的实例,新手程序猿接手这个代码时,就会发一份这个文档,进行约定,熟悉其中的规定、条约。

其二方法:可以让机器帮我们检查,人肯定是没有机器靠谱的,我们期望让机器帮我们对代码中指定的类,创建类的实例个数进行检查、校验,当创建的实例个数超过我们期望个数,就编译报错,这一点还是能实现的,其中单例模式就是已经设计好的套路,可以实现这种预期效果。


二、饿汉模式

饿汉模式是指创建实例是时期非常早,在类加载的时候,程序一启动,就已经创建好实例了,使用 “饿汉”这个词,就是形容创建实例非常迫切,非常早。下面实现一个单例模式

代码:

class Singleton {
    private static Singleton instance = new Singleton();
    public static Singleton getInstance() {
        return instance;
    }
    private Singleton(){ }
}
public class TestDemo4 {
    public static void main(String[] args) {
        
    }
}

当我们想在主线程中创建一个Singleton的实例时,会报错,如图:

singleton类的代码解析:

singleton内部,第一行代码就是这个,如图

这说明,singleton内部一开始就创建好了实例,创建实例非常迫切,使用static修饰说明instance是类属性。

接下来是获取这个类的实例方法,如图

因为我们不希望能创建出多个实例,所以就把singleton的构造方法用private来修饰,如图:

这样,如果我们想new一个Singleton对象,也new不了,但也有非正规手段,去获取singleton里面的属性或方法:反射。

最后,不管我们用getInstance获取多少次实例,获取的对象都是同一个对象,验证如下:

代码:

class Singleton {
    private static Singleton instance = new Singleton();
    public static Singleton getInstance() {
        return instance;
    }
    private Singleton(){ }
}
public class TestDemo4 {
    public static void main(String[] args) {
        Singleton s1 = Singleton.getInstance();
        Singleton s2 = Singleton.getInstance();
        System.out.println(s1 == s2);
    }
}

执行结果:


三、懒汉模式

和饿汉模式不一样的是,创建实例的时机比较晚,没饿汉创建实例那么迫切,只有第一次使用这个类时,才会创建实例。

代码如下:

class SingletonLazy {
    private static SingletonLazy instance = null;
    public static SingletonLazy getInstance() {
        if(instance == null) {
            instance = new SingletonLazy();
        }
        return instance;
    }
    private SingletonLazy() { }
}
public class TestDemo5 {
    public static void main(String[] args) {

    }
}

代码解析:

一开始,没有创建实例,只是给singletonLazy赋值为null,并没有new一个对象,也就是没有创建实例;首次调用getInstance,instance是null的,所以会new一个对象,创建实例。如果不是第一次调用getInstance,就直接返回instance,这也保证了这个类的实例是唯一的,只有一个实例;

和饿汉模式的区别就是没那么迫切创建实例,等需要调用这个类的时候才创建一个实例,而饿汉模式是有了这个类就创建出实例。

懒汉模式的优点:有的程序,要在一定条件下,才需要进行相关的操作,有时候不满足这个条件,也就不需要完成这个操作了,这样,就把这个操作省下来了,而懒汉模式,就是这一思想,当需要这个实例时,才创建实例。像肯德基的疯狂星期四,只有在星期四的时候才会加载出相关信息,其他时间就不会加载。


四、饿汉模式和懒汉模式的线程安全问题分析

1、饿汉模式(线程安全)

代码分析:

当有多个线程,同时并发执行,调用getInstance方法,取instance,这时,线程是安全的吗?显然。这是线程安全操作,因为只涉及到读,多线程读取同一个变量,是线程安全的。而instance很早之前就已经创建好了,不会修改它,一直也只有这一个实例,也不涉及写的操作。

2、懒汉模式(线程不安全)

代码分析:

这里调用getInstance方法后,就会创建出实例来,那么我们想想,如果多个线程同时调用这个方法,此时SingletonLazy类里面的instance都为null,那么这些线程都会new对象,就会创建多个实例,这时,就不符合我们单例模式的预期了,所以,这个代码是线程不安全的。

这也是线程不安全的直接原因,就是 “写” 操作不是原子的。

解决懒汉模式的线程安全问题

①给写操作打包成原子

因为多线程并发执行的时候,可能读到的都是instance == null,所以会创建多个实例,那我们就给它加锁,让它在创建实例的时候,只能创建一个。

代码:

class SingletonLazy {
    private static Object locker = new Object();
    private static SingletonLazy instance = null;
    public static SingletonLazy getInstance() {
        synchronized (locker) {
            if(instance == null) {
                instance = new SingletonLazy();
            }
        }
        return instance;
    }
    private SingletonLazy() { }
}

这样,能让写操作的时候打包成一个原子,实例只可能创建一个的情况。

②去除冗余操作

以上操作加上了还是有问题:如果已经创建出实例了,我们还有加锁来判断它是不是null吗,加锁这些操作也是要消耗硬件资源的,没有必要为此浪费资源空间,如果已经不是null了,我们就想让它直接返回,不再进行加锁操作。

代码:

class SingletonLazy {
    private static Object locker = new Object();
    private static SingletonLazy instance = null;
    public static SingletonLazy getInstance() {
        if (instance == null) {
            synchronized (locker) {
                if (instance == null) {
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }
    private SingletonLazy() { }
}

注意看这里有两个判断条件是一样的,目前位置,也应该是我们第一次遇到这种代码,为什么要套两层一模一样的代码呢?要注意,这里的两个条件表达的都是不同的意思,第一个if条件判断是要让instance==null时,才要加锁的意思,提升代码的执行效率;而第二个if条件判断是把写操作打包成一个原子,保证线程安全。这两个if条件判断所表达的意思是不同的。

③存在指令重排序的问题

指令重排序:指令重排序也是编译器的一种优化,在保证原代码的逻辑不变,调整原代码的指令执行顺序,从而让程序的执行效率提高。

举个栗子:

现在我们要去菜市场买菜,买菜的清单:黄瓜,西红柿,萝卜,茄子,卖这些菜的位置分布图:

如果按照买菜清单顺序买,路线是这样的:

但是我们如果改变顺序,就能缩短我们买菜的时间了,如图:

指令重排序也是类似的道理,保证原代码的逻辑不变,改变原有指令的顺序,从而提高代码的执行效率,其中这个代码,就存在着指令重排序的优化,如图:

原本指令执行顺序:

1、去内存申请一段空间

2、在这个内存中调用构造方法,创建实例

3、从内存中取出地址,赋值给这个实例instance。

指令重排序后的顺序:1, 3 , 2

按照指令重排序后的代码执行逻辑就变成了这样:

假设有两个线程,现在执行顺序是这样的,如图:

因为指令重排序后,先去内存申请一段空间,然后是赋值给instance,那这时,instance就不是null了,第二个线程不会进入到if语句了,直接返回instance,可是instance还没有创建出实例,这样返回肯定是有问题的,这样,也就线程不安全了。

解决方案:给instance这个变量,加volatile修饰,强制取消编译器的优化,不能指令重排序,同时也排除了内存可见性的问题。

加volatile后的代码:

class SingletonLazy {
    private static Object locker = new Object();
    private static volatile SingletonLazy instance = null;
    public static SingletonLazy getInstance() {
        if (instance == null) {
            synchronized (locker) {
                if (instance == null) {
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }
    private SingletonLazy() { }
}

到这一步,才真的解决了懒汉模式的线程安全问题。

3、解决懒汉模式线程安全问题的最终代码:

class SingletonLazy {
    private static Object locker = new Object();
    private static volatile SingletonLazy instance = null;
    public static SingletonLazy getInstance() {
        if (instance == null) {
            synchronized (locker) {
                if (instance == null) {
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }
    private SingletonLazy() { }
}
public class ThreadDemo1 {
    public static void main(String[] args) {
        SingletonLazy s1 = SingletonLazy.getInstance();
        SingletonLazy s2 = SingletonLazy.getInstance();
        System.out.println(s1 == s2);
    }
}

main线程是来测试每次拿到SingletonLazy的实例是不是同一个,

执行结果:符合我们的预期

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1277944.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

『测试基础』| 如何理解测试用例管理和缺陷管理?

『测试管理攻略』| 如何理解测试用例管理和缺陷管理? 1 测试用例定义2 测试用例设计原则3 测试用例的评审4 测试如何维护?5 用例的作用6 用例管理工具7 缺陷关注的重点8 缺陷分析9 缺陷管理工具 1 测试用例定义 测试用例(TestCase&#xff0…

[山东大学操作系统课程设计]实验三

0.写在前面(重点) 由于一些突发事件,导致目前大家手里或多或少都有了完整版的答案了。甚至很多学长学姐们写的代码远比我写的要好很多。 但是这个系列我觉得还是稍微坚持下去一点,或许某些地方可以帮到未来的同学们。 还是那句话,有需要可…

百度智能云文字识别使用问题解决合集

1.创建试用程序时需要16位的签名MD5 解决方法:使用Java8 201版本及以下的jdk创建签名 下载地址:http://www.codebaoku.com/jdk/jdk-oracle-jdk1-8.html#jdk8u201 生成签名代码:keytool -genkeypair -v -keystore D:\key.jks -storetype PKC…

rdf-file:SM2加解密

一:SM2简介 SM2是中国密码学算法标准中的一种非对称加密算法(包括公钥和私钥)。SM2主要用于数字签名、密钥交换和加密解密等密码学。 生成秘钥:用于生成一对公钥和私钥。公钥:用于加密数据和验证数字签名。私钥&…

YOLOv8改进 | 2023 | 给YOLOv8换个RT-DETR的检测头(重塑目标检测前沿技术)

一、本文介绍 本文给大家带来是用最新的RT-DETR模型的检测头去替换YOLOv8中的检测头。RT-DETR号称是打败YOLO的检测模型,其作为一种基于Transformer的检测方法,相较于传统的基于卷积的检测方法,提供了更为全面和深入的特征理解,将…

Safe and Practical GPU Computation in TrustZone论文阅读笔记

Safe and Practical GPU Computation in TrustZone 背景知识: youtube GR视频讲解链接:ASPLOS’22 - Session 2A - GPUReplay: A 50-KB GPU Stack for Client ML - YouTube GPU软件栈: 概念:"GPU软件栈"指的是与GPU硬件…

【代码】基于改进差分进化算法的微电网调度研究matlab

程序名称:基于改进差分进化算法的微电网调度研究 实现平台:matlab 代码简介:了进一步提升差分进化算法的优化性能,结合粒子群(PSO)算法的进化机制,提出一种混合多重随机变异粒子差分进化算法(DE-PSO)。所提算法不仅使用粒子群差分变异策略和…

⭐ Unity 里让 Shader 动画在 Scene 面板被持续刷新

写 Unity Shader的时候,只有播放状态下的 Game 面板能看到Shader 顺畅的动态效果,不方便。 想要带有动态效果的 Shader 在 Scene 面板持续更新动画,只需要打开一个开关就能让 Scene 持续刷新动画了。 感谢大家的观看,您的点赞和关…

nrm安装以及常用命令

做为开发者,我们经常会使用到淘宝镜像去安装一些包。基本上设置的都是cnpm这种。但是这一长串其实很难记住。这时,我们可以用nrm进行镜像的切换更为方便。 npm install -g cnpm --registryhttps://registry.npm.taobao.org 安装方法 npm install nrm …

代码随想录算法训练营第38天| 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯

JAVA代码编写 动态规划(Dynamic Programming) 一个问题可以划分为多个子问题,且子问题之间有关联,就可以使用动态规划。 动态规划问题步骤: 确定dp数组(dp table)以及下标的含义确定递推公式…

Linux操作系统 2.Linux基础命令

Linux基础命令,掌握这一套清晰的讲解就够啦! 本篇博客给大家带来的是Linux的基础命令和vi编辑器 感谢大家收看~ 一、Linux目录结构 Linux的目录结构是一个树形结构,Linux只有一个根目录 / 所有文件都存在/下面 Linux路径的描述方式 Linux系…

通过查看ThreadLocal的源码进行简单理解

目录 为什么要使用ThreadLocal? 简单案例 ThreadLocal源码分析 断点跟踪 为什么要使用ThreadLocal 在多线程下,如果同时修改公共变量可能会存在线程安全问题,JDK虽然提供了同步锁与Lock等方法给公共访问资源加锁,但在高并发…

OpenCV-Python:计算机视觉框架

1.背景 俗话说“工欲善其事必先利其器”,想要学好计算机视觉,需要借助于相关的计算机视觉库,这样在进行学习的时候可以达到事半功倍的效果。 2.早期计算机视觉框架概述 Matlab的最早历史可以追溯到1970年,开始是作为数据处理工…

YUVRGB

一、直观感受 根据上面的图片,不难看出: RGB的每个分量,是对当前颜色的一个亮度值Y分量对呈现出清晰的图像有着很大的贡献Cb、Cr分量的内容不太容易识别清楚YUV将亮度信息(Y)与色度信息(UV)分离…

最多不一定最好,只有适合的才是最好的!电脑的内存多大才是合理的

RAM,或称随机存取存储器,是最好的笔记本电脑和最好的电脑最重要的组成部分之一。硬盘驱动器(HDD)或固态驱动器(SSD)存储可以被视为电脑的长期内存,内存是其短期内存。内存可以跟踪后台运行的应用…

P6 链表 插入数据节点 尾插法指定节点插入

目录 前言 ​编辑 01 链表指定节点后插入数据(根据节点号插入) 测试代码 02 链表指定节点后插入数据(根据节点的数据插入) 尾插法的代码 前言 …

for循环定义域问题

记录一个偶然发现的问题&#xff0c;代码如下 int main(int argc, char *argv[], char *envp[]){for(int i 1; i < 10; i);printf("%d",i); return 0; } 可以看到for循环后加了一个分号&#xff0c;按理说应该报变量i未定义的错误&#xff0c;但此时在编译器中…

RCE绕过

1.[SCTF 2021]rceme 总结下获取disabled_funciton的方式 1.phpinfo() 2.var_dump(ini_get(“disable_functions”)); 3.var_dump(get_cfg_var(“disable_functions”)); 其他的 var_dump(get_cfg_var(“open_basedir”)); var_dump(ini_get_all()); <?php if(isset($_POS…

使用coco数据集进行语义分割(1):数据预处理,制作ground truth

如何coco数据集进行目标检测的介绍已经有很多了&#xff0c;但是关于语义分割几乎没有。本文旨在说明如何处理 stuff_train2017.json stuff_val2017.json panoptic_train2017.json panoptic_val2017.json&#xff0c;将上面那些json中的dict转化为图片的label mask&am…

C++入门篇第十篇----继承

前言&#xff1a; 本篇我们将开始讲解C的继承&#xff0c;我想要说的是&#xff0c;C的主体基本就是围绕类和对象展开的&#xff0c;继承也是以类和对象为主体&#xff0c;可以说&#xff0c;C相较于C优化的地方就在于它对于结构体的使用方法的高度扩展和适用于更多实际的场景…