Opencv-C++笔记 (18) : 轮廓和凸包

news2025/7/12 22:23:25

文章目录

  • 一、轮廓
    • findContours发现轮廓
    • drawContours绘制轮廓
    • 代码
  • 二.几何及特性概括——凸包(Convex Hull)
    • 凸包概念
    • 凸包扫描算法介绍——Graham扫描算法
  • 相关API介绍
  • 程序示例
  • 轮廓集合及特性性概括——轮廓周围绘制矩形框和圆形
    • 相关理论介绍
    • 轮廓周围绘制矩形 -API
    • 绘制步骤
    • 程序实例
  • 四.图像矩(Image Moments)
    • 1、相关理论
    • 2、API介绍
    • 计算轮廓面积cv::contourArea
    • .计算轮廓长度cv::arcLength
    • 例程
  • 五、多边形测试
  • 1.相关理论
    • 2.相关API介绍
    • 程序示例

一、轮廓

轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法。 所以边缘提取的阈值选定会影响最终轮廓发现结果

轮廓查找步骤:

  • 输入图像转为灰度图像cvtColor
  • 使用Canny进行边缘提取或者threshold阈值操作,得到二值图像
  • 使用findContours寻找轮廓
  • 使用drawContours绘制轮廓

findContours发现轮廓

在二值图像上发现轮廓使用

cv::findContours(
InputOutputArray binImg,     输入图像,非0的像素被看成1,0的像素值保持不变,8-bit
OutputArrayOfArrays contours,  全部发现的轮廓对象
OutputArray, hierachy      图该的拓扑结构 std::vector<cv::Vec4i>,可选,该轮廓发现算法正是基于图像拓扑结构实现。它的元素与轮廓的数量一样多。对于每个第 i 个轮廓轮廓[i],元素hierarchy[i][0]、hierarchy[i][1]
int mode,            轮廓返回的模式
int method,            发现方法
Point offset=Point()       轮廓像素的位移,默认(0, 0)没有位移
)

drawContours绘制轮廓

在二值图像上发现轮廓cv::findContours之后对发现的轮廓数据进行绘制显示

drawContours(
InputOutputArray binImg,      输出图像
OutputArrayOfArrays contours,    全部发现的轮廓对象
Int contourIdx            轮廓索引号
const Scalar & color,        绘制颜色
int thickness,/           绘制线宽
int lineType ,             线的类型LINE_8
InputArray hierarchy,        拓扑结构图
int maxlevel,           最大层数, 0只绘制当前的,1表示绘制绘制当前及其内嵌的轮廓
Point offset=Point()        轮廓位移,可选

代码

//轮廓发现:通过cv::fingContoursAPI查找轮廓,通过cv::drawContours绘制轮廓
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int threshold_value = 100;
int threshold_max = 255;
RNG rng;
const char* output_win = "Demo_Contour";
void Demo_Contours(int, void*);
Mat src,dst;
int main(int argc, char** argv) {

	src = imread("D:/photos/45.png");
	if (src.empty()) {
		printf("could not load image...\n");
		return -1;
	}
	namedWindow("input image", CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);
	imshow("input image", src);
	cvtColor(src, src, CV_BGR2GRAY);//灰度化图像,为Canny边缘检测做准备

	const char* trackbar_title = "threshold_value";
	createTrackbar(trackbar_title, output_win, &threshold_value, threshold_max, Demo_Contours);//动态调整Canny边缘检测的阈值
	Demo_Contours(0, 0);//使程序刚开始就有结果,与createTrackbar无关


	waitKey(0);
	return 0;
}

void Demo_Contours(int, void*) {
	Mat canny_output;
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	Canny(src, canny_output, threshold_value, threshold_value * 2, 3, false);//Canny边缘检测,3代表算子尺寸
	imshow("canny image", canny_output);
	findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
	//contours储存轮廓的点集,轮廓提取方式为RETR_TREE,轮廓表达为:CHAIN_APPROX_SIMPLE
	dst = Mat::zeros(src.size(), CV_8UC3);
	RNG rng(12345);
	for (size_t i = 0; i < contours.size(); i++) {//逐条绘制轮廓
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		drawContours(dst, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));
	}
	imshow(output_win, dst);

}

在这里插入图片描述

二.几何及特性概括——凸包(Convex Hull)

凸包概念

什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部。
**正式定义:**包含点集合S中所有点的最小凸多边形称为凸包

凸包扫描算法介绍——Graham扫描算法

  • 首先选择Y方向最低的点作为起始点p0。
  • 从p0开始极坐标扫描,依次添加p1….pn(排序顺序是根据极坐标的角度大小,逆时针方向)。
  • 对每个点pi来说,如果添加pi点到凸包中导致一个左转向(逆时针方法)则添加该点到凸包,
    反之如果导致一个右转向(顺时针方向)删除该点从凸包中。
    在这里插入图片描述

相关API介绍

convexHull(
InputArray points,// 输入候选点,来自findContours
OutputArray hull,// 凸包
bool clockwise,// default true, 顺时针方向
bool returnPoints)// true 表示返回点个数,如果第二个参数是			vector<Point>则自动忽略
}

凸包逼近实现步骤:

  • 首先把图像从RGB转为灰度。

  • 然后再转为二值图像。

  • 在通过发现轮廓得到候选点。

  • 凸包API调用。

  • 绘制显示。

程序示例

#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int threshold_value = 100;
int threshold_max = 255;
RNG rng(12345);
const char* output_win = "Demo_convex hull";
void threshold_callback(int, void*);
Mat src, dst,dst2,gray_src;
int main(int argc, char** argv) {

	src = imread("D:/photos/45.png");
	if (src.empty()) {
		printf("could not load image...\n");
		return -1;
	}
	namedWindow("input image", CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);
	const char* trackbar_label = "threshold:";
	imshow("input image", src);
	cvtColor(src, gray_src, CV_BGR2GRAY);
	blur(gray_src, gray_src, Size(3, 3), Point(-1, -1), BORDER_DEFAULT);//均值模糊进行降噪处理
	imshow("src_gray", gray_src);
	createTrackbar(trackbar_label, output_win, &threshold_value, threshold_max, threshold_callback);
	threshold_callback(0, 0);
	waitKey(0);
	return 0;
}
void threshold_callback(int, void*) {
	Mat bin_output;
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	threshold(gray_src, bin_output, threshold_value, threshold_max, THRESH_BINARY);
	findContours(bin_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
	vector<vector<Point>> convexs(contours.size());
	dst = Mat::zeros(src.size(), CV_8UC3);
	dst2 = Mat::zeros(src.size(), CV_8UC3);
	for (size_t i = 0; i < contours.size(); i++) {
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		convexHull(contours[i], convexs[i], false, true);
		//drawContours(dst, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));
	}
	vector<Vec4i> empty(0);
		for (size_t k = 0; k < contours.size(); k++) {
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		drawContours(dst2, contours, k, color, 2, LINE_8, hierachy,1, Point(0, 0));
		drawContours(dst, convexs, k, color, 2, LINE_8, empty, 0, Point(0, 0));//注意此时hieracgy选项填Mat()
	}
	imshow(output_win, dst);
	imshow("contours_Demo", dst2);
	return;		
}

在这里插入图片描述

轮廓集合及特性性概括——轮廓周围绘制矩形框和圆形

相关理论介绍

在这里插入图片描述

轮廓周围绘制矩形 -API

approxPolyDP(InputArray curve, OutputArray approxCurve, double epsilon, bool closed)
基于RDP算法实现,目的是减少多边形轮廓点数。
在这里插入图片描述

cv::minEnclosingCircle(InputArray points, //得到最小区域圆形
Point2f& center, // 圆心位置
float& radius)// 圆的半径
cv::fitEllipse(InputArray points)得到最小椭圆

绘制步骤

首先将图像变为二值图像。
发现轮廓,找到图像轮廓。
通过相关API在轮廓点上找到最小包含矩形和圆,旋转矩形与椭圆。
绘制它们。

程序实例

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;
Mat src, gray_src, drawImg;
int threshold_v = 170;
int threshold_max = 255;
const char* output_win = "rectangle-demo";
RNG rng(12345);
void Contours_Callback(int, void*);
int main(int argc, char** argv) {
	src = imread("D:/photos/45.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	cvtColor(src, gray_src, CV_BGR2GRAY);
	blur(gray_src, gray_src, Size(3, 3), Point(-1, -1));
	
	const char* source_win = "input image";
	namedWindow(source_win, CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);
	imshow(source_win, src);

	createTrackbar("Threshold Value:", output_win, &threshold_v, threshold_max, Contours_Callback);
	Contours_Callback(0, 0);

	waitKey(0);
	return 0;
}

void Contours_Callback(int, void*) {
	Mat binary_output;
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	threshold(gray_src, binary_output, threshold_v, threshold_max, THRESH_BINARY);
	//imshow("binary image", binary_output);
	findContours(binary_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(-1, -1));

	vector<vector<Point>> contours_ploy(contours.size());
	vector<Rect> ploy_rects(contours.size());
	vector<Point2f> ccs(contours.size());
	vector<float> radius(contours.size());

	vector<RotatedRect> minRects(contours.size());
	vector<RotatedRect> myellipse(contours.size());

	for (size_t i = 0; i < contours.size(); i++) {
		approxPolyDP(Mat(contours[i]), contours_ploy[i], 3, true);
		ploy_rects[i] = boundingRect(contours_ploy[i]);
		minEnclosingCircle(contours_ploy[i], ccs[i], radius[i]);
		if (contours_ploy[i].size() > 5) {
			myellipse[i] = fitEllipse(contours_ploy[i]);
			minRects[i] = minAreaRect(contours_ploy[i]);
		}
	}

	// draw it
	drawImg = Mat::zeros(src.size(), src.type());
	Point2f pts[4];
	for (size_t t = 0; t < contours.size(); t++) {
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		//rectangle(drawImg, ploy_rects[t], color, 2, 8);
		//circle(drawImg, ccs[t], radius[t], color, 2, 8);
		if (contours_ploy[t].size() > 5) {
			ellipse(drawImg, myellipse[t], color, 1, 8);
			minRects[t].points(pts);
			for (int r = 0; r < 4; r++) {
				line(drawImg, pts[r], pts[(r + 1) % 4], color, 1, 8);
			}
		}
	}

	imshow(output_win, drawImg);
	return;
}

运行效果:
在这里插入图片描述

四.图像矩(Image Moments)

1、相关理论

在这里插入图片描述
在这里插入图片描述

2、API介绍

1.计算矩cv::moments

moments(
InputArray  array,//输入数据
bool   binaryImage=false // 是否为二值图像
)

API介绍与使用 – cv::moments 计算生成数据在这里插入图片描述

计算轮廓面积cv::contourArea

contourArea(
InputArray  contour,//输入轮廓数据
bool   oriented// 默认false、返回绝对值)
}

.计算轮廓长度cv::arcLength

arcLength(
InputArray  curve,//输入曲线数据
bool   closed// 是否是封闭曲线)
}

实现步骤:

提取图像边缘。
发现轮廓。
计算每个轮廓对象的矩。
计算每个对象的中心、弧长、面积

例程

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

Mat src, gray_src;
int threshold_value = 80;
int threshold_max = 255;
const char* output_win = "image moents demo";
RNG rng(12345);
void Demo_Moments(int, void*);
int main(int argc, char** argv) {
	src = imread("D:/photos/45.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	cvtColor(src, gray_src, CV_BGR2GRAY);
	GaussianBlur(gray_src, gray_src, Size(3, 3), 0, 0);

	char input_win[] = "input image";
	namedWindow(input_win, CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);
	imshow(input_win, src);

	createTrackbar("Threshold Value : ", output_win, &threshold_value, threshold_max, Demo_Moments);
	Demo_Moments(0, 0);

	waitKey(0);
	return 0;
}

void Demo_Moments(int, void*) {
	Mat canny_output;
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;

	Canny(gray_src, canny_output, threshold_value, threshold_value * 2, 3, false);
	findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));

	vector<Moments> contours_moments(contours.size());
	vector<Point2f> ccs(contours.size());
	for (size_t i = 0; i < contours.size(); i++) {
		contours_moments[i] = moments(contours[i]);
		ccs[i] = Point(static_cast<float>(contours_moments[i].m10 / contours_moments[i].m00), static_cast<float>(contours_moments[i].m01 / contours_moments[i].m00));
	}
	Mat drawImg;// = Mat::zeros(src.size(), CV_8UC3);
	src.copyTo(drawImg);
	for (size_t i = 0; i < contours.size(); i++) {
		if (contours[i].size() < 100) {
			continue;
		}
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		printf("center point x : %.2f y : %.2f\n", ccs[i].x, ccs[i].y);
		printf("contours %d area : %.2f   arc length : %.2f\n", i, contourArea(contours[i]), arcLength(contours[i], true));
		drawContours(drawImg, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));
		circle(drawImg, ccs[i], 2, color,2, 8);
	}

	imshow(output_win, drawImg);
	return;
}

在这里插入图片描述

五、多边形测试

1.相关理论

点多边形测试 : 测试一个点是否在给定的多边形内部,边缘或者外部。
在这里插入图片描述

2.相关API介绍

cv::pointPolygonTest
pointPolygonTest(
InputArray  contour,// 输入的轮廓
Point2f  pt, // 测试点
bool  measureDist // 是否返回距离值,如果是false,1表示在内面,0表示在边界上,-1表示在外部,true返回实际距离
)
返回数据是double类型

程序示例

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;
int main(int argc, char** argv) {
	const int r = 100;
	Mat src = Mat::zeros(r * 4, r * 4, CV_8UC1);

	vector<Point2f> vert(6);
	vert[0] = Point(3 * r / 2, static_cast<int>(1.34*r));   
	vert[1] = Point(1 * r, 2 * r);
	vert[2] = Point(3 * r / 2, static_cast<int>(2.866*r));   
	vert[3] = Point(5 * r / 2, static_cast<int>(2.866*r));
	vert[4] = Point(3 * r, 2 * r);   
	vert[5] = Point(5 * r / 2, static_cast<int>(1.34*r));

	for (int i = 0; i < 6; i++) {
		line(src, vert[i], vert[(i + 1) % 6], Scalar(255), 3, 8, 0);
	}
	
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	Mat csrc;
	src.copyTo(csrc);
	findContours(csrc, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
	Mat raw_dist = Mat::zeros(csrc.size(), CV_32FC1);
	for (int row = 0; row < raw_dist.rows; row++) {
		for (int col = 0; col < raw_dist.cols; col++) {
			double dist = pointPolygonTest(contours[0], Point2f(static_cast<float>(col), static_cast<float>(row)), true);
			raw_dist.at<float>(row, col) = static_cast<float>(dist);
		}
	}

	double minValue, maxValue;
	minMaxLoc(raw_dist, &minValue, &maxValue, 0, 0, Mat());
	Mat drawImg = Mat::zeros(src.size(), CV_8UC3);
	for (int row = 0; row < drawImg.rows; row++) {
		for (int col = 0; col < drawImg.cols; col++) {
			float dist = raw_dist.at<float>(row, col);
			if (dist > 0) {
				drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(1.0 - (dist / maxValue)) * 255);
			}
			else if (dist < 0) {
				drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(1.0 - (dist / minValue)) * 255);
			} else {
				drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(255 - dist));
				drawImg.at<Vec3b>(row, col)[1] = (uchar)(abs(255 - dist));
				drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(255 - dist));
			}
		}
	}

	const char* output_win = "point polygon test demo";
	char input_win[] = "input image";
	namedWindow(input_win, CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);

	imshow(input_win, src);
	imshow(output_win, drawImg);

	waitKey(0);
	return 0;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/944883.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何使用ADX指标呢?10秒教会你

这是使用ADX大佬的收益结果&#xff0c;这是没有使用ADX技术指标的新手表情&#xff0c;事实证明只要会使用ADX指标&#xff0c;交易的结果就是令人可喜的&#xff0c;那么如何使用ADX指标呢?anzo capital昂首资本10秒教会你。 从评估价格方向、模式和水平开始技术分析。使用…

BingChat与ChatGPT比较,哪个聊天机器人能让你获益更多?

人工智能领域的最新进展为普通人创造新的收入来源提供了更多机会。今年早些时候&#xff0c;微软对OpenAI进行了大量投资。此后&#xff0c;微软在Microsoft Edge浏览器中推出了自家的聊天机器人Bing Chat。 在论坛和社交媒体上&#xff0c;你可以发现这两个AI工具都吸引了很…

C++之ifstream成员函数get、tellg、eof实例(一百八十五)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

js查找结构不同的两个数组中相同的元素并删除元素

准确的是循环中删除数组元素会遇到的bug及解决办法。 删除后需要注意元素的索引值 &#xff0c;比如以下案例&#xff0c;删除2之后索引值继续 1,但原数组索引已经变化了&#xff0c;所以会出现遍历漏掉元素和索引值对不上的情况 然后就把forEach循环改成了for循环&#xff0…

龙蜥白皮书精选:SysAK—大规模复杂场景的系统运维利器

文/系统运维 SIG 01 概述 SysAK&#xff08;System Analyse Kit&#xff09;是龙蜥社区系统运维 SIG&#xff0c;通过对过往百万服务器运维经验进行抽象总结&#xff0c;而提供的一个全方位的系统运维工具集&#xff0c;可以覆盖系统的日常监控、线上问题诊断和系统故障修复…

Java 中数据结构LinkedList的用法

LinkList 链表&#xff08;Linked list&#xff09;是一种常见的基础数据结构&#xff0c;是一种线性表&#xff0c;但是并不会按线性的顺序存储数据&#xff0c;而是在每一个节点里存到下一个节点的地址。 链表可分为单向链表和双向链表。 一个单向链表包含两个值: 当前节点…

MySQL 日期格式 DATETIME 和 TIMESTAMP

MySQL日期格式介绍 存储日期的方式mysql中存储日期的格式datetimetimestampDatetime和Timestamp的比较相同点&#xff1a;不同点&#xff1a; 数值型时间戳&#xff08;INT&#xff09;DATETIME vs TIMESTAMP vs INT&#xff0c;怎么选&#xff1f; 存储日期的方式 字符串Date…

Kotlin协程简述与上下文和调度器(Dispatchers )

协程概述 子程序或者称为函数&#xff0c;在所有的语言中都是层级调用&#xff0c;如&#xff1a;A调用B&#xff0c;B在执行过程中又调用了C&#xff0c;C执行完毕返回&#xff0c;B执行完毕返回&#xff0c;最后是A执行完毕。所以子程序是 通过栈来实现的&#xff0c;一个线…

Sar测试简介

1.Sar 简介 SAR即英语“Specific Absorption Rate”的缩写。SAR值一般指手机产品中电磁波所产生的热能&#xff0c;它是对人体产生影响的衡量数据&#xff0c;单位是W/Kg&#xff08;瓦/公斤&#xff09; 对于测量手机产品的“SAR”&#xff0c;通俗地讲&#xff0c;就是测量手…

STM32f103入门(4)对射式红外传感器计次(外部中断)

中断:在主程序运行过程中&#xff0c;出现了特定的中断触发条件 (中断源)&#xff0c;使得CPU暂停当前正在运行的程序&#xff0c;转而去处理中断程序处理完成后又返回原来被暂停的位置继续运行中断优先级:当有多个中断源同时申请中断时&#xff0c;CPU会根据中断源的轻重缓急进…

国内的化妆品核辐射检测

化妆品核辐射物质检测是指检测化妆品中的放射性物质&#xff0c;包括放射性核素和放射性同位素。这些放射性物质主要来源于环境中的放射性污染&#xff0c;如空气、水和土壤中的放射性物质&#xff0c;以及化妆品生产过程中的放射性污染&#xff0c;如原料、设备、工艺等。化妆…

如何理解IaaS、PaaS、SaaS?盘点受欢迎的八大SaaS平台!

如何理解IaaS、PaaS、SaaS&#xff1f;他们各自的优势在哪里&#xff1f;我们又应该如何选择&#xff1f;本篇将带大家深入浅出的了解IaaS、PaaS、SaaS&#xff0c;并为大家盘点2023最受欢迎的SaaS平台。 通过本文你将了解&#xff1a; IaaS、PaaS、SaaS分别是什么我们该如何理…

高德地图api给点设置闪烁动画

首先高德提供了点动画两种选择和掉落弹跳&#xff0c;可以在属性中定义也可以setAnimation 但是没闪烁 所以css&#xff0c;遍历所有点标记找到要闪烁的点给一个class在deepcss一个动画 js function setshadow(params) { //获取地图所有点标记let data map.getAllOverlays(&…

Mac下使用Homebrew安装MySQL5.7

Mac下使用Homebrew安装MySQL5.7 1. 安装Homebrew & Oh-My-Zsh2. 查询软件信息3. 执行安装命令4. 开机启动5. 服务状态查询6. 初始化配置7. 登录测试7.1 终端登录7.2 客户端登录 参考 1. 安装Homebrew & Oh-My-Zsh mac下如何安装homebrew MacOS安装Homebrew与Oh-My-Zsh…

在字节划水5年被优化,太无情了...

前言 先简单说下&#xff0c;涵哥是某不知名 985 的本硕&#xff0c;17 年毕业加入字节&#xff0c;以“人员优化”的名义无情被裁员&#xff0c;之后跳槽到了有赞&#xff0c;一直从事软件测试的工作。还差一个月也6年了吧&#xff0c;算是在这行的资深划水员。6年的时间也让…

广告英语翻译的原则,你了解多少

我们知道&#xff0c;广告语的特点是通俗化、口语化&#xff0c;能够吸引读者注意&#xff0c;刺激其消费欲望。因此&#xff0c;广告英语翻译也要具有强烈的感染力&#xff0c;达到其预期功能。那么&#xff0c;如何做好广告英语翻译&#xff0c;关于广告英语翻译的原则&#…

SpringBoot集成JWT token实现权限验证

先在pom中引入 JWT依赖 <!-- JWT --> <dependency><groupId>com.auth0</groupId><artifactId>java-jwt</artifactId><version>4.3.0</version> </dependency> 然后引入一个生成的 token 的工具类 import cn.hutool.c…

TCP协议基础

一&#xff1a; TCP协议是什么&#xff1f; TCP协议是基于面向连接&#xff0c;可靠传输&#xff0c;基于字节流的传输层通信协议 1. 面向连接 TCP协议是一种面向连接的协议&#xff0c;意味着在双方在建立数据传输之前&#xff0c;需要进行一个逻辑上的连接&#xff0c;且是…

MySQL的mysql-bin.00xx binlog日志文件的清理

目录 引言手工清理配置自动清理 引言 公司一个项目生产环境mysql数据盘占用空间增长得特别快&#xff0c;经过排查发现是开启了mysql的binlog日志。如果把binlog日志关闭&#xff0c;如果操作万一出现问题&#xff0c;就没有办法恢复数据&#xff0c;很不安全&#xff0c;只能…