GreatSQL删除分区慢的跟踪

news2025/7/9 5:58:59

GreatSQL删除分区慢的跟踪

背景

某业务系统,每天凌晨会删除分区表的一个分区(按天分区),耗时较久,从最开始的30秒,慢慢变为1分钟+,影响到交易业务的正常进行。 在测试环境进行了模拟,复现了删除分区慢的情况,本次基于GreatSQL8.0.25-17进行测试,官方mysql版本也存在相同问题。

测试环境

$ mysql -h127.0.0.1 -P8025 -uroot -p

mysql: [Warning] Using a password on the command line interface can be insecure.
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 10
Server version: 8.0.25-17 GreatSQL, Release 17, Revision 4733775f703

Copyright (c) 2000, 2021, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

greatsql> select version();
+-----------+
| version() |
+-----------+
| 8.0.25-17 |
+-----------+
1 row in set (0.00 sec)
greatsql> show variables like 'autocommit' ;
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit    | ON    |
+---------------+-------+
1 row in set (0.01 sec)

greatsql> show variables like 'innodb_buffer_pool_size';
+-------------------------+------------+
| Variable_name           | Value      |
+-------------------------+------------+
| innodb_buffer_pool_size | 4294967296 |
+-------------------------+------------+
1 row in set (0.01 sec)

greatsql> show variables like 'innodb_flush_log_at_trx_commit';
+--------------------------------+-------+
| Variable_name                  | Value |
+--------------------------------+-------+
| innodb_flush_log_at_trx_commit | 1     |
+--------------------------------+-------+
1 row in set (0.00 sec)

greatsql> show variables like 'sync_binlog';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| sync_binlog   | 1     |
+---------------+-------+
1 row in set (0.00 sec)

建表

CREATE TABLE `t_partition` (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `ua` varchar(100) DEFAULT NULL,
  `start_time` datetime NOT NULL,
  PRIMARY KEY (`id`,`start_time`)
)  PARTITION BY RANGE (to_days(`start_time`))
(PARTITION P20230129 VALUES LESS THAN (738915) ENGINE = InnoDB,
 PARTITION P20230130 VALUES LESS THAN (738916) ENGINE = InnoDB,
 PARTITION P20230131 VALUES LESS THAN (738917) ENGINE = InnoDB,
 PARTITION P20230201 VALUES LESS THAN (738918) ENGINE = InnoDB,
 PARTITION P20230202 VALUES LESS THAN (738919) ENGINE = InnoDB,
 PARTITION P20230203 VALUES LESS THAN (738920) ENGINE = InnoDB,
 PARTITION P20230204 VALUES LESS THAN (738921) ENGINE = InnoDB,
 PARTITION P20230302 VALUES LESS THAN (738947) ENGINE = InnoDB,
 PARTITION P20230303 VALUES LESS THAN (738948) ENGINE = InnoDB,
 PARTITION P20230304 VALUES LESS THAN (738949) ENGINE = InnoDB,
 PARTITION P20230305 VALUES LESS THAN (738950) ENGINE = InnoDB,
 PARTITION P20230306 VALUES LESS THAN (738951) ENGINE = InnoDB,
 PARTITION P20230307 VALUES LESS THAN (738952) ENGINE = InnoDB, 
 PARTITION P20230308 VALUES LESS THAN (738953) ENGINE = InnoDB,
 PARTITION P20230309 VALUES LESS THAN (738954) ENGINE = InnoDB,
 PARTITION P20230310 VALUES LESS THAN (738955) ENGINE = InnoDB, 
 PARTITION P20230311 VALUES LESS THAN (738956) ENGINE = InnoDB, 

 PARTITION P20230312 VALUES LESS THAN (738957) ENGINE = InnoDB,
 PARTITION P20230313 VALUES LESS THAN (738958) ENGINE = InnoDB,
 PARTITION P20230314 VALUES LESS THAN (738959) ENGINE = InnoDB,
 PARTITION P20230315 VALUES LESS THAN (738960) ENGINE = InnoDB,
 PARTITION P20230316 VALUES LESS THAN (738961) ENGINE = InnoDB,
 PARTITION P20230317 VALUES LESS THAN (738962) ENGINE = InnoDB, 
 PARTITION P20230318 VALUES LESS THAN (738963) ENGINE = InnoDB,
 PARTITION P20230319 VALUES LESS THAN (738964) ENGINE = InnoDB,
 PARTITION P20230320 VALUES LESS THAN (738965) ENGINE = InnoDB, 
 PARTITION P20230321 VALUES LESS THAN (738966) ENGINE = InnoDB, 

 PARTITION P20230322 VALUES LESS THAN (738967) ENGINE = InnoDB,
 PARTITION P20230323 VALUES LESS THAN (738968) ENGINE = InnoDB,
 PARTITION P20230324 VALUES LESS THAN (738969) ENGINE = InnoDB,
 PARTITION P20230325 VALUES LESS THAN (738970) ENGINE = InnoDB,
 PARTITION P20230326 VALUES LESS THAN (738971) ENGINE = InnoDB,
 PARTITION P20230327 VALUES LESS THAN (738972) ENGINE = InnoDB, 
 PARTITION P20230328 VALUES LESS THAN (738973) ENGINE = InnoDB,
 PARTITION p20230329 VALUES LESS THAN (738974) ENGINE = InnoDB,
 PARTITION p20230330 VALUES LESS THAN (738975) ENGINE = InnoDB,
 PARTITION p20230331 VALUES LESS THAN (738976) ENGINE = InnoDB,
 PARTITION p20230401 VALUES LESS THAN (738977) ENGINE = InnoDB,
 PARTITION p20230402 VALUES LESS THAN (738978) ENGINE = InnoDB,
 PARTITION p20230403 VALUES LESS THAN (738979) ENGINE = InnoDB);

插入数据

greatsql> insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-10' ;
Query OK, 1 row affected (0.01 sec)
Records: 1  Duplicates: 0  Warnings: 0

greatsql> insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-10' ;
Query OK, 1 row affected (0.00 sec)
Records: 1  Duplicates: 0  Warnings: 0

greatsql> insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-10' ;
Query OK, 1 row affected (0.01 sec)
Records: 1  Duplicates: 0  Warnings: 0



greatsql> insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),start_time from t_partition; 
Query OK, 3 rows affected (0.01 sec)
Records: 3  Duplicates: 0  Warnings: 0

greatsql> insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),start_time from t_partition; 
Query OK, 6 rows affected (0.00 sec)
Records: 6  Duplicates: 0  Warnings: 0

............... 
greatsql> insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),start_time from t_partition; 
Query OK, 3145728 rows affected (35.68 sec)
Records: 3145728  Duplicates: 0  Warnings: 0

greatsql> insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),start_time from t_partition; 
Query OK, 6291456 rows affected (1 min 11.51 sec)
Records: 6291456  Duplicates: 0  Warnings: 0

greatsql> insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),start_time from t_partition; 
Query OK, 12582912 rows affected (2 min 26.74 sec)
Records: 12582912  Duplicates: 0  Warnings: 0

greatsql> select count(*) from t_partition; 
+----------+
| count(*) |
+----------+
| 25165824 |
+----------+
1 row in set (0.50 sec)
greatsql> select count(*) from t_partition partition(P20230310); 
+----------+
| count(*) |
+----------+
| 25165824 |
+----------+ 

向分区插入数据

insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-11' from t_partition partition(P20230310); 
 insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-12' from t_partition partition(P20230310); 
 insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-13' from t_partition partition(P20230310); 
 insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-14' from t_partition partition(P20230310); 
 insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-15' from t_partition partition(P20230310); 
 insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-16' from t_partition partition(P20230310); 
 insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-17' from t_partition partition(P20230310); 
 insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-18' from t_partition partition(P20230310); 
 insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-19' from t_partition partition(P20230310); 
 insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-20' from t_partition partition(P20230310); 
 insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-21' from t_partition partition(P20230310); 

 。。。。。。。。。。。
greatsql>  insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-19' from t_partition partition(P20230310); 
Query OK, 25165824 rows affected (5 min 17.92 sec)
Records: 25165824  Duplicates: 0  Warnings: 0

greatsql>  insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-20' from t_partition partition(P20230310); 
Query OK, 25165824 rows affected (5 min 19.56 sec)
Records: 25165824  Duplicates: 0  Warnings: 0

greatsql>  insert into t_partition(ua,start_time) select substring(md5(rand()),1,20),'2023-03-21' from t_partition partition(P20230310); 
Query OK, 25165824 rows affected (5 min 27.27 sec)
Records: 25165824  Duplicates: 0  Warnings: 0

更新数据

greatsql> Update t_partition set ua=concat(ua,'abc') where start_time='2023-03-19';
Query OK, 25165824 rows affected (12 min 55.53 sec)
Rows matched: 25165824  Changed: 25165824  Warnings: 0

删除分区s

greatsql> alter table t_partition drop partition P20230311;

Query OK, 0 rows affected (13.68 sec)

Records: 0 Duplicates: 0 Warnings: 0

greatsql> alter table t_partition drop partition P20230312;

Query OK, 0 rows affected (0.07 sec)

Records: 0 Duplicates: 0 Warnings: 0

两个分区数据量是一样,但删除第一个分区耗时较长。

$ perf record -ag -p  11222  -o /mysqldb/perf_drop_part_mysql2.data

Warning:
PID/TID switch overriding SYSTEM
^C[ perf record: Woken up 41 times to write data ]
[ perf record: Captured and wrote 10.610 MB /mysqldb/perf_drop_part_mysql2.data (54351 samples) ]
  Children      Self  Command  Shared Object        Symbol                                                   
+   99.17%     0.00%  mysqld   libpthread-2.17.so   [.] start_thread                                         
+   99.17%     0.00%  mysqld   mysqld               [.] pfs_spawn_thread                                     
+   99.17%     0.00%  mysqld   mysqld               [.] handle_connection                                    
+   99.17%     0.00%  mysqld   mysqld               [.] do_command                                           
+   99.17%     0.00%  mysqld   mysqld               [.] dispatch_command                                     
+   99.17%     0.00%  mysqld   mysqld               [.] dispatch_sql_command                                 
+   99.16%     0.00%  mysqld   mysqld               [.] mysql_execute_command                                
+   99.16%     0.00%  mysqld   mysqld               [.] Sql_cmd_alter_table::execute                         
+   99.16%     0.00%  mysqld   mysqld               [.] mysql_alter_table                                    
+   99.09%     0.00%  mysqld   mysqld               [.] mysql_inplace_alter_table                            
+   98.56%     0.00%  mysqld   mysqld               [.] ha_innopart::commit_inplace_alter_partition          
+   98.54%     0.00%  mysqld   mysqld               [.] alter_parts::prepare_or_commit_for_new               
+   98.54%     0.00%  mysqld   mysqld               [.] alter_part_normal::try_commit                        
+   98.53%     0.00%  mysqld   mysqld               [.] btr_drop_ahi_for_table                               
+   98.52%     1.30%  mysqld   mysqld               [.] btr_drop_next_batch                                  
+   97.20%     0.03%  mysqld   mysqld               [.] btr_search_drop_page_hash_when_freed                 
+   96.34%     2.03%  mysqld   mysqld               [.] btr_search_drop_page_hash_index                      
+   86.52%    52.25%  mysqld   mysqld               [.] ha_remove_all_nodes_to_page                          
+   34.21%    34.15%  mysqld   mysqld               [.] ha_delete_hash_node                                  
+    4.27%     2.68%  mysqld   mysqld               [.] rec_get_offsets_func                                 
+    2.11%     2.10%  mysqld   mysqld               [.] ut_fold_binary                                       
+    1.58%     1.58%  mysqld   mysqld               [.] rec_init_offsets                                     
+    1.30%     1.30%  mysqld   mysqld               [.] rec_fold                                             
+    0.57%     0.03%  mysqld   mysqld               [.] buf_page_get_gen                                     
+    0.57%     0.00%  mysqld   mysqld               [.] execute_native_thread_routine                        
+    0.56%     0.01%  mysqld   [kernel.kallsyms]    [k] system_call_fastpath

从系统调用上看有大量的自适应hash相关的调用

重启关闭自适应hash

greatsql> show variables like '%hash%';
+----------------------------------+-------+
| Variable_name                    | Value |
+----------------------------------+-------+
| innodb_adaptive_hash_index       | OFF   |
| innodb_adaptive_hash_index_parts | 8     |
+----------------------------------+-------+

修改配置文件,关闭自适应hash,按照上面的流程从新执行

greatsql> alter table t_partition drop partition P20230311;

Query OK, 0 rows affected (0.08 sec)

Records: 0 Duplicates: 0 Warnings: 0

greatsql> alter table t_partition drop partition P20230312;

Query OK, 0 rows affected (0.08 sec)

Records: 0 Duplicates: 0 Warnings: 0

关闭自适应hash后,相同的操作过程,删除第一个分区的时间明显变短,删除每个分区的时间基本上一致。

备注:innodb_adaptive_hash_index是全局变量,可以动态修改,不重启数据库。

测试结果汇总

自适应hash对比第一次删分区第二次删分区
innodb_buffer_pool_instances=8& innodb_adaptive_hash_index=on13.680.07
innodb_buffer_pool_instances=8& innodb_adaptive_hash_index=off0.080.08

源码分析

// btr_drop_ahi_for_table
void btr_drop_ahi_for_table(dict_table_t *table) {
  const ulint len = UT_LIST_GET_LEN(table->indexes);

  if (len == 0) {
    return;
  }

  const dict_index_t *indexes[MAX_INDEXES];
  const page_size_t page_size(dict_table_page_size(table));

  for (;;) {
    ulint ref_count = 0;
    const dict_index_t **end = indexes;

    for (dict_index_t *index = table->first_index(); index != nullptr;
         index = index->next()) {
      if (ulint n_refs = index->search_info->ref_count) {
        ut_ad(!index->disable_ahi);
        ut_ad(index->is_committed());
        ref_count += n_refs;
        ut_ad(indexes + len > end);
        *end++ = index;
      }
    }

    ut_ad((indexes == end) == (ref_count == 0));

    if (ref_count == 0) {
      return;
    }

    btr_drop_next_batch(page_size, indexes, end);  // breakpoint  

    std::this_thread::yield();
  }
}



// btr_drop_next_batch
static void btr_drop_next_batch(const page_size_t &page_size,
                                const dict_index_t **first,
                                const dict_index_t **last) {
  static constexpr unsigned batch_size = 1024;
  std::vector<page_id_t> to_drop;
  to_drop.reserve(batch_size);

  for (ulint i = 0; i < srv_buf_pool_instances; ++i) {
    to_drop.clear();
    buf_pool_t *buf_pool = buf_pool_from_array(i);
    mutex_enter(&buf_pool->LRU_list_mutex);
    const buf_page_t *prev;

    for (const buf_page_t *bpage = UT_LIST_GET_LAST(buf_pool->LRU);
         bpage != nullptr; bpage = prev) {
      prev = UT_LIST_GET_PREV(LRU, bpage);

      ut_a(buf_page_in_file(bpage));
      if (buf_page_get_state(bpage) != BUF_BLOCK_FILE_PAGE ||
          bpage->buf_fix_count > 0) {
        continue;
      }

      const dict_index_t *block_index =
          reinterpret_cast<const buf_block_t *>(bpage)->ahi.index;

      /* index == nullptr means the page is no longer in AHI, so no need to
      attempt freeing it */
      if (block_index == nullptr) {
        continue;
      }
      /* pages IO fixed for read have index == nullptr */
      ut_ad(!bpage->was_io_fix_read());

      if (std::find(first, last, block_index) != last) {
        to_drop.emplace_back(bpage->id);
        if (to_drop.size() == batch_size) {   // batch_size = 1024
          break;
        }
      }
    }

    mutex_exit(&buf_pool->LRU_list_mutex);

    for (const page_id_t &page_id : to_drop) {
      btr_search_drop_page_hash_when_freed(page_id, page_size); // breakpoint
    }
  }
}

// btr_search_drop_page_hash_when_freed
void btr_search_drop_page_hash_when_freed(const page_id_t &page_id,
                                          const page_size_t &page_size) {
  buf_block_t *block;
  mtr_t mtr;

  ut_d(export_vars.innodb_ahi_drop_lookups++);

  mtr_start(&mtr);

  /* If the caller has a latch on the page, then the caller must
  have a x-latch on the page and it must have already dropped
  the hash index for the page. Because of the x-latch that we
  are possibly holding, we cannot s-latch the page, but must
  (recursively) x-latch it, even though we are only reading. */

  block = buf_page_get_gen(page_id, page_size, RW_X_LATCH, nullptr,
                           Page_fetch::PEEK_IF_IN_POOL, UT_LOCATION_HERE, &mtr);

  if (block) {
    /* If AHI is still valid, page can't be in free state.
    AHI is dropped when page is freed. */
    ut_ad(!block->page.file_page_was_freed);

    buf_block_dbg_add_level(block, SYNC_TREE_NODE_FROM_HASH);

    dict_index_t *index = block->ahi.index;
    if (index != nullptr) {
      /* In all our callers, the table handle should
      be open, or we should be in the process of
      dropping the table (preventing eviction). */
      ut_ad(index->table->n_ref_count > 0 || dict_sys_mutex_own());
      btr_search_drop_page_hash_index(block);
    }
  }

  mtr_commit(&mtr);
}

函数逻辑说明:

drop 分区和add分区都会清空所有分区的AHI信息,最耗时的如下
循环每个分区调用函数
->btr_drop_ahi_for_table
  循环表(或者分区)中的每个索引,如果索引都没有用到AHI,
则退出
  循环innodb buffer中的每个实例,根据LRU链表循环每个page
如果page建立了AHI信息,且是要删除表(或者分区)的相关索引
  则放入drop vector容器中
如果page没有建立AHI信息 
则跳过
如果drop verctor容器中填满1024个page
则清理一次,循环每个page,调用函数
->btr_search_drop_page_hash_index
  计算page所在AHI结构的slot信息,以便找到对应的hash_table_t结构
  循环page中所有的行
    循环行中访问到的索引字段(访问模式),计算出fold信息填入到fold[]数组中
    本循环中会通过函数rec_get_offsets进行字段偏移量的获取,为耗用CPU的函数
      循环fold[]数组,一个fold代表一行数据,调用函数
       ->ha_remove_all_nodes_to_page,为耗用CPU的函数
         ->ha_chain_get_fist
           根据fold信息找到hash结构的cell
         循环本cell中的链表信息
           如果行的地址在本要删除的page上,调用函数
           ->ha_delete_hash_node,为消耗CPU的函数
             进行链表和hash结构的维护
每次处理完1024个page后,yeild线程主动放弃CPU,避免长期占用CPU,醒来后继续处理

drop 分区和add分区都会循环每个分区调用函数btr_drop_ahi_for_table 、btr_search_drop_page_hash_index清空所有分区及索引的的AHI信息, 删除第1个分区的时ahi信息被清空, 删第2个分区的时候buffer中已经没有ahi信息了,所有删除第2个分区就很快了。

避免方式

针对以上原因,线上执行 drop必须遵守以下原则:

1、关闭AHI功能,不使用AHI带来的查询加速功能,需要先在测试环境进行业务测试,确保业务性能不受影响。

2、删除表的第一个分区时,内部会清理该表在每个buffer pool实例中对应的数据块页面,耗时较久,接着删其他分区耗时很小,建议将每天一次的删除分区的操作改为每周或者每月批量执行删除分区的操作,并且需要在业务低峰期操作。

Enjoy GreatSQL :)

关于 GreatSQL

GreatSQL是由万里数据库维护的MySQL分支,专注于提升MGR可靠性及性能,支持InnoDB并行查询特性,是适用于金融级应用的MySQL分支版本。

相关链接: GreatSQL社区 Gitee GitHub Bilibili

GreatSQL社区:

image

社区有奖建议反馈: https://greatsql.cn/thread-54-1-1.html

社区博客有奖征稿详情: https://greatsql.cn/thread-100-1-1.html

社区2022年度勋章获奖名单: https://greatsql.cn/thread-184-1-1.html

(对文章有疑问或者有独到见解都可以去社区官网提出或分享哦~)

技术交流:

image-20221030163217640

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/618901.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

市场火爆!三大发展优势加速汽车零部件行业布局

当前&#xff0c;中国新能源汽车自主品牌崛起&#xff0c;为汽车零部件发展带来新机遇&#xff1b;有别于传统汽车零部件市场&#xff0c;新能源领域&#xff0c;主机厂标准提升&#xff0c;对数字化要求逐渐提高&#xff0c;汽车零部件企业的智能制造异常重要&#xff0c;企业…

二分类结局变量Logistic回归临床模型预测(二)——3. 单因素多因素logistic回归分析及三线表(三)

本节讲的是二分类结局变量的临床模型预测,与之前讲的Cox回归不同,https://lijingxian19961016.blog.csdn.net/article/details/124088364https://lijingxian19961016.blog.csdn.net/article/details/124088364https://lijingxian19961016.blog.csdn.net/article/details/1300…

1929-2022年全球站点的逐月最低气温(Shp\Excel\12000个站点)

气象数据是在各项研究中都经常使用的数据&#xff0c;气象指标包括气温、风速、降水、湿度等指标&#xff0c;其中又以气温指标最为常用&#xff01;说到气温数据&#xff0c;最详细的气温数据是具体到气象监测站点的气温数据&#xff01; 之前我们分享过1929-2022年全球气象站…

Qt学习之旅 -信号与槽

文章目录 点击关闭窗口自定义信号和槽自定义信号和槽解决重载问题信号和连接信号断开连接Qt4版本信号槽连接Lambda表达式 点击关闭窗口 connect(信号发送者&#xff0c;发送的具体信号,信号接收者&#xff0c;型号的处理(槽slot));这里自定义的MyPushButton与QPushButton别无二…

【NLP】KMP匹配算法

一、说明 KMP算法。也称为Knuth-Morris-Pratt字符串查找算法可在一个字符串S内查找一个词W的出现位置。一个词在不匹配时本身就包含足够的信息来确定下一个匹配可能的开始位置&#xff0c;此算法利用这一特性以避免重新检查先前配对的字符。将时间复杂度从O(M*N)降为O(N). 这个…

C++ Primer Plus 第三章习题

目录 复习题 1. 为什么C有多种整型&#xff1f; 2. 声明与下述描述相符的变量&#xff1f; 3. C 提供了什么措施来防止超出整型的范围&#xff1f; 4. 33L和33之间有什么区别&#xff1f; 5. 下面两条C语句是否等价&#xff1f; 6. 如何使用C来找出编码88表示的字符&…

又一个生物标志物ADMA被发现!可为OA治疗提供新方向!

文章标题&#xff1a;Metabolite asymmetric dimethylarginine (ADMA) functions as a destabilization enhancer of SOX9 mediated by DDAH1 in osteoarthriti 发表期刊&#xff1a;Science Advances 影响因子&#xff1a;14.95 作者单位&#xff1a;浙江大学医学院附属邵逸…

EasyUi03

1.无限极分类. 1.1无限极分类介绍. 1.1.1何为无限极分类. 无限极分类简单点说就是一个类别能够分多个子类&#xff0c;而后一个子类又能够分多个子类&#xff0c;就这样无限分下去&#xff0c;就好象 windows能够新建一个文件夹&#xff0c;而后在这个文件夹里又能够建一些文…

《嵌入式系统》知识总结12:SysTick定时器

SysTick定时器 系统时钟&#xff08;SysTick&#xff09; Corte-M3在内核中包含的简单定时器 • 该定时器的时钟源可以来自CM3内部时钟&#xff08;FCLK&#xff09;&#xff0c;或CM3外部时钟&#xff08;STCLK&#xff09; • 在STM32微控制器中&#xff0c;SysTick的时钟源可…

平板触控笔哪款好用?电容笔牌子排行

现如今&#xff0c;电容笔越来越受欢迎&#xff0c;不少人在记笔记、学画画甚至是玩游戏的时候都会使用它。最近看到很多人问&#xff0c;iPad电容笔哪款好用&#xff1f;针对这个问题&#xff0c;我来给大家推荐四款公认好用的平替电容笔&#xff0c;一起来看看吧。 一、主动…

实验篇(7.2) 08. 通过安全隧道访问内网服务器 (FortiClient-IPsec) ❀ 远程访问

【简介】通过对SSL VPN与IPsec VPN的对比&#xff0c;我们知道SSL VPN是基于应用层的VPN&#xff0c;而IPsec VPN是基于网络层的VPN&#xff0c;IPsec VPN对所有的IP应用均透明。我们看看怎么用FortiClient实现IPsec VPN远程访问。 实验要求与环境 OldMei集团深圳总部部署了一台…

眼底图片解读(对比图!!!)

目录 1. 前言 2.常见眼底解析 (1) 黄斑变性 (2) 糖尿病视网膜病变 (3) 青光眼 (4) 视网膜血管阻塞 (5)视网膜裂孔和脱离 1. 前言 眼底图像是通过眼底摄影等技术获取的眼底部位的影像&#xff0c;可以提供关于眼睛健康和疾病的重要信息。以下是眼底图像中常见的信息和相关…

只见新人笑,不见旧人哭 ChatGPT淘汰了多少产品?快来了解!

ChatGPT作为目前世界上最先进的人工智能聊天工具&#xff0c;其GPT模型就是一种自然语言处理&#xff08;NLP&#xff09;模型&#xff0c;使用多层变换器&#xff08;Transformer&#xff09;来预测下一个单词的概率分布&#xff0c;通过训练在大型文本语料库上学习到的语言模…

chatgpt赋能python:Python自动运行教程:让你的工作更智能化

Python自动运行教程&#xff1a;让你的工作更智能化 Python是一种高级、解释型、面向对象的编程语言&#xff0c;被广泛应用于数据分析、机器学习和自动化任务等领域。除此之外&#xff0c;Python还能够实现自动化运行&#xff0c;让用户无需手动干预&#xff0c;从而减轻工作…

Think系列产品进入BIOS的操作方法

Think系列产品进入BIOS的操作方法&#xff1a; 适用范围&#xff1a;ThinkPad全系列笔记本ThinkCentre全系列一体机ThinkStation全系列工作站 温馨提示&#xff1a;如果您用的是Win8/8.1系统&#xff0c;小乐强烈建议您在系统下执行“重启”后的开机界面(切记&#xff1a;不是从…

DynaMask:用于实例分割的动态掩码选择

文章目录 DynaMask: Dynamic Mask Selection for Instance Segmentation摘要本文方法Dual-Level FPNRegion-Level FPNFeature Aggregation Module (FAM)Mask Switch Module (MSM)损失函数 实验结果 DynaMask: Dynamic Mask Selection for Instance Segmentation 摘要 具有代表…

共见·价值成就|光环云与您相约2023亚马逊云科技合作伙伴峰会!

在云计算蓬勃发展的今天&#xff0c; 在推动业务发展、实现共赢的过程中&#xff0c; 价值成就&#xff0c;是亚马逊云科技对合作伙伴 自始至终的承诺。 为助力合作伙伴成就价值&#xff0c;共建成长路径&#xff0c; 2023亚马逊云科技合作伙伴峰会将于 6月27日在上海世博…

跟着LearnOpenGL学习7--坐标系统

文章目录 一、概述二、变换过程三、局部空间四、世界空间五、观察空间六、裁剪空间6.1、正射投影6.2、透视投影 七、组合变换八、3D实战8.1、创建模型矩阵8.2、创建观察矩阵8.3、创建投影矩阵8.4、变换矩阵传入着色器 九、3D立方体9.1、Z缓冲9.2、更多的立方体 一、概述 OpenG…

【022】C++的结构体、共用体以及枚举详解(最全讲解)

C的结构体、共用体以及枚举详解 引言一、结构体的概述二、结构体变量的操作2.1、结构体变量的初始化2.2、清空整个结构体变量2.3、键盘给结构体变量中的成员赋值2.4、单独操作结构体中的成员2.5、相同类型结构体变量之间的赋值 三、结构体嵌套结构体四、结构体数组五、结构体指…

JUC基础-0531

3 线程间通信 线程间通信的模型有两种:共享内存和消息传递&#xff0c;以下方式都是基本这两种模型来实现的。我们来基本一道面试常见的题目来分析 多线程编程步骤&#xff1a; 第一步&#xff1a;创建资源类&#xff0c;在资源类创建属性和操作方法第二步&#xff1a;在资源…