张量的偏微分
张量的一阶微分,定义:
  
      
       
        
         
          
          
            ∂ 
           
          
            A 
           
          
          
          
            ∂ 
           
          
            A 
           
          
         
        
          = 
         
         
         
           A 
          
          
          
            , 
           
          
            A 
           
          
         
        
          = 
         
         
          
          
            ∂ 
           
           
           
             A 
            
            
            
              i 
             
            
              j 
             
            
           
          
          
          
            ∂ 
           
           
           
             A 
            
            
            
              k 
             
            
              l 
             
            
           
          
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           k 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           l 
          
         
        
          ) 
         
         
        
          = 
         
         
         
           δ 
          
          
          
            i 
           
          
            k 
           
          
         
         
         
           δ 
          
          
          
            j 
           
          
            l 
           
          
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           k 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           l 
          
         
        
          ) 
         
        
          = 
         
        
          I 
         
        
       
         \frac{\partial A}{\partial A} = A_{,A}=\frac{\partial A_{ij}}{\partial A_{kl}}(\hat e_i\bigotimes\hat e_j\bigotimes\hat e_k\bigotimes\hat e_l )\\=\delta_{ik}\delta_{jl}(\hat e_i\bigotimes\hat e_j\bigotimes\hat e_k\bigotimes\hat e_l ) = I 
        
       
     ∂A∂A=A,A=∂Akl∂Aij(e^i⨂e^j⨂e^k⨂e^l)=δikδjl(e^i⨂e^j⨂e^k⨂e^l)=I
张量的迹的微分:
  
      
       
        
         
          
          
            ∂ 
           
          
            T 
           
          
            r 
           
          
            ( 
           
          
            A 
           
          
            ) 
           
          
          
          
            ∂ 
           
          
            A 
           
          
         
        
          = 
         
        
          T 
         
        
          r 
         
        
          ( 
         
        
          A 
         
         
         
           ) 
          
          
          
            , 
           
          
            A 
           
          
         
        
          = 
         
         
          
          
            ∂ 
           
           
           
             A 
            
            
            
              k 
             
            
              k 
             
            
           
          
          
          
            ∂ 
           
           
           
             A 
            
            
            
              i 
             
            
              j 
             
            
           
          
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
         
        
          = 
         
         
         
           δ 
          
          
          
            k 
           
          
            i 
           
          
         
         
         
           δ 
          
          
          
            k 
           
          
            j 
           
          
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
        
          = 
         
         
         
           δ 
          
          
          
            i 
           
          
            j 
           
          
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
        
          = 
         
        
          1 
         
        
       
         \frac{\partial Tr(A)}{\partial A} = Tr(A)_{,A}=\frac{\partial A_{kk}}{\partial A_{ij}}(\hat e_i\bigotimes\hat e_j )\\=\delta_{ki}\delta_{kj}(\hat e_i\bigotimes\hat e_j ) = \delta_{ij}(\hat e_i\bigotimes\hat e_j ) = 1 
        
       
     ∂A∂Tr(A)=Tr(A),A=∂Aij∂Akk(e^i⨂e^j)=δkiδkj(e^i⨂e^j)=δij(e^i⨂e^j)=1
张量的迹平方的微分:
  
      
       
        
         
          
          
            ∂ 
           
          
            T 
           
          
            r 
           
          
            ( 
           
          
            A 
           
           
           
             ) 
            
           
             2 
            
           
          
          
          
            ∂ 
           
          
            A 
           
          
         
        
          = 
         
        
          2 
         
        
          T 
         
        
          r 
         
        
          ( 
         
        
          A 
         
        
          ) 
         
        
          T 
         
        
          r 
         
        
          ( 
         
        
          A 
         
         
         
           ) 
          
          
          
            , 
           
          
            A 
           
          
         
        
          = 
         
        
          2 
         
        
          T 
         
        
          r 
         
        
          ( 
         
        
          A 
         
        
          ) 
         
        
          1 
         
        
       
         \frac{\partial Tr(A)^2}{\partial A} = 2Tr(A)Tr(A)_{,A}=2Tr(A)1 
        
       
     ∂A∂Tr(A)2=2Tr(A)Tr(A),A=2Tr(A)1
张量平方的迹的微分:
  
      
       
        
         
          
          
            ∂ 
           
          
            T 
           
          
            r 
           
          
            ( 
           
           
           
             A 
            
           
             2 
            
           
          
            ) 
           
          
          
          
            ∂ 
           
          
            A 
           
          
         
        
          = 
         
         
          
          
            ∂ 
           
           
           
             A 
            
            
            
              s 
             
            
              r 
             
            
           
           
           
             A 
            
            
            
              r 
             
            
              s 
             
            
           
          
          
          
            ∂ 
           
           
           
             A 
            
            
            
              i 
             
            
              j 
             
            
           
          
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
         
        
          = 
         
        
          [ 
         
         
         
           A 
          
          
          
            r 
           
          
            s 
           
          
         
         
          
          
            ∂ 
           
           
           
             A 
            
            
            
              s 
             
            
              r 
             
            
           
          
          
          
            ∂ 
           
           
           
             A 
            
            
            
              i 
             
            
              j 
             
            
           
          
         
        
          + 
         
         
         
           A 
          
          
          
            s 
           
          
            r 
           
          
         
         
          
          
            ∂ 
           
           
           
             A 
            
            
            
              r 
             
            
              s 
             
            
           
          
          
          
            ∂ 
           
           
           
             A 
            
            
            
              i 
             
            
              j 
             
            
           
          
         
        
          ] 
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
         
        
          = 
         
        
          [ 
         
         
         
           A 
          
          
          
            r 
           
          
            s 
           
          
         
         
         
           δ 
          
          
          
            s 
           
          
            i 
           
          
         
         
         
           δ 
          
          
          
            r 
           
          
            j 
           
          
         
        
          + 
         
         
         
           A 
          
          
          
            s 
           
          
            r 
           
          
         
         
         
           δ 
          
          
          
            r 
           
          
            i 
           
          
         
         
         
           δ 
          
          
          
            s 
           
          
            j 
           
          
         
        
          ] 
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
         
        
          = 
         
        
          [ 
         
         
         
           A 
          
          
          
            j 
           
          
            i 
           
          
         
        
          + 
         
         
         
           A 
          
          
          
            j 
           
          
            i 
           
          
         
        
          ] 
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
        
          = 
         
        
          2 
         
         
         
           A 
          
          
          
            j 
           
          
            i 
           
          
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
        
          = 
         
        
          2 
         
         
         
           A 
          
         
           T 
          
         
        
       
         \frac{\partial Tr(A^2)}{\partial A} =\frac{\partial A_{sr}A_{rs}}{\partial A_{ij}}(\hat e_i\bigotimes\hat e_j )\\=[A_{rs}\frac{\partial A_{sr}}{\partial A_{ij}} + A_{sr}\frac{\partial A_{rs}}{\partial A_{ij}}](\hat e_i\bigotimes\hat e_j )\\ =[A_{rs}\delta_{si}\delta_{rj}+A_{sr}\delta_{ri}\delta_{sj}](\hat e_i\bigotimes\hat e_j )\\= [A_{ji}+A_{ji}](\hat e_i\bigotimes\hat e_j )=2A_{ji}(\hat e_i\bigotimes\hat e_j )=2A^T 
        
       
     ∂A∂Tr(A2)=∂Aij∂AsrArs(e^i⨂e^j)=[Ars∂Aij∂Asr+Asr∂Aij∂Ars](e^i⨂e^j)=[Arsδsiδrj+Asrδriδsj](e^i⨂e^j)=[Aji+Aji](e^i⨂e^j)=2Aji(e^i⨂e^j)=2AT
张量立方的迹的微分:
  
      
       
        
         
          
          
            ∂ 
           
          
            T 
           
          
            r 
           
          
            ( 
           
           
           
             A 
            
           
             3 
            
           
          
            ) 
           
          
          
          
            ∂ 
           
          
            A 
           
          
         
        
          = 
         
         
          
          
            ∂ 
           
           
           
             A 
            
            
            
              p 
             
            
              q 
             
            
           
           
           
             A 
            
            
            
              q 
             
            
              r 
             
            
           
           
           
             A 
            
            
            
              r 
             
            
              p 
             
            
           
          
          
          
            ∂ 
           
           
           
             A 
            
            
            
              i 
             
            
              j 
             
            
           
          
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
         
        
          = 
         
        
          [ 
         
         
         
           A 
          
          
          
            q 
           
          
            r 
           
          
         
         
         
           A 
          
          
          
            r 
           
          
            p 
           
          
         
         
          
          
            ∂ 
           
           
           
             A 
            
            
            
              p 
             
            
              q 
             
            
           
          
          
          
            ∂ 
           
           
           
             A 
            
            
            
              i 
             
            
              j 
             
            
           
          
         
        
          + 
         
         
         
           A 
          
          
          
            p 
           
          
            q 
           
          
         
         
         
           A 
          
          
          
            r 
           
          
            p 
           
          
         
         
          
          
            ∂ 
           
           
           
             A 
            
            
            
              q 
             
            
              r 
             
            
           
          
          
          
            ∂ 
           
           
           
             A 
            
            
            
              i 
             
            
              j 
             
            
           
          
         
        
          + 
         
         
         
           A 
          
          
          
            p 
           
          
            q 
           
          
         
         
         
           A 
          
          
          
            q 
           
          
            r 
           
          
         
         
          
          
            ∂ 
           
           
           
             A 
            
            
            
              r 
             
            
              p 
             
            
           
          
          
          
            ∂ 
           
           
           
             A 
            
            
            
              i 
             
            
              j 
             
            
           
          
         
        
          ] 
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
         
        
          = 
         
        
          [ 
         
         
         
           A 
          
          
          
            q 
           
          
            r 
           
          
         
         
         
           A 
          
          
          
            r 
           
          
            p 
           
          
         
         
         
           δ 
          
          
          
            p 
           
          
            i 
           
          
         
         
         
           δ 
          
          
          
            q 
           
          
            j 
           
          
         
        
          + 
         
         
         
           A 
          
          
          
            p 
           
          
            q 
           
          
         
         
         
           A 
          
          
          
            r 
           
          
            p 
           
          
         
         
         
           δ 
          
          
          
            q 
           
          
            i 
           
          
         
         
         
           δ 
          
          
          
            r 
           
          
            j 
           
          
         
        
          + 
         
         
         
           A 
          
          
          
            p 
           
          
            q 
           
          
         
         
         
           A 
          
          
          
            q 
           
          
            r 
           
          
         
         
         
           δ 
          
          
          
            r 
           
          
            i 
           
          
         
         
         
           δ 
          
          
          
            p 
           
          
            j 
           
          
         
        
          ] 
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
         
        
          = 
         
        
          [ 
         
         
         
           A 
          
          
          
            j 
           
          
            r 
           
          
         
         
         
           A 
          
          
          
            r 
           
          
            i 
           
          
         
        
          + 
         
         
         
           A 
          
          
          
            p 
           
          
            i 
           
          
         
         
         
           A 
          
          
          
            j 
           
          
            p 
           
          
         
        
          + 
         
         
         
           A 
          
          
          
            j 
           
          
            q 
           
          
         
         
         
           A 
          
          
          
            q 
           
          
            i 
           
          
         
        
          ] 
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
         
        
          = 
         
        
          3 
         
         
         
           A 
          
          
          
            j 
           
          
            r 
           
          
         
         
         
           A 
          
          
          
            r 
           
          
            i 
           
          
         
        
          ( 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           i 
          
         
        
          ⨂ 
         
         
          
          
            e 
           
          
            ^ 
           
          
         
           j 
          
         
        
          ) 
         
        
          = 
         
        
          3 
         
        
          ( 
         
         
         
           A 
          
         
           2 
          
         
         
         
           ) 
          
         
           T 
          
         
        
       
         \frac{\partial Tr(A^3)}{\partial A} =\frac{\partial A_{pq}A_{qr}A_{rp}}{\partial A_{ij}}(\hat e_i\bigotimes\hat e_j )\\=[A_{qr}A_{rp}\frac{\partial A_{pq}}{\partial A_{ij}} + A_{pq}A_{rp}\frac{\partial A_{qr}}{\partial A_{ij}} + A_{pq}A_{qr}\frac{\partial A_{rp}}{\partial A_{ij}} ](\hat e_i\bigotimes\hat e_j )\\ =[A_{qr}A_{rp}\delta_{pi}\delta_{qj} + A_{pq}A_{rp} \delta_{qi}\delta_{rj} + A_{pq}A_{qr}\delta_{ri}\delta_{pj}](\hat e_i\bigotimes\hat e_j )\\= [A_{jr}A_{ri}+A_{pi}A_{jp}+A_{jq}A_{qi}](\hat e_i\bigotimes\hat e_j )\\ =3A_{jr}A_{ri}(\hat e_i\bigotimes\hat e_j ) =3(A^2)^T 
        
       
     ∂A∂Tr(A3)=∂Aij∂ApqAqrArp(e^i⨂e^j)=[AqrArp∂Aij∂Apq+ApqArp∂Aij∂Aqr+ApqAqr∂Aij∂Arp](e^i⨂e^j)=[AqrArpδpiδqj+ApqArpδqiδrj+ApqAqrδriδpj](e^i⨂e^j)=[AjrAri+ApiAjp+AjqAqi](e^i⨂e^j)=3AjrAri(e^i⨂e^j)=3(A2)T
对于对称张量:
  
      
       
        
         
          
          
            ∂ 
           
          
            T 
           
          
            r 
           
          
            ( 
           
          
            C 
           
          
            ) 
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
        
          = 
         
        
          1 
         
         
         
          
          
            ∂ 
           
          
            [ 
           
          
            T 
           
          
            r 
           
          
            ( 
           
          
            C 
           
          
            ) 
           
           
           
             ] 
            
           
             2 
            
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
        
          = 
         
        
          2 
         
        
          T 
         
        
          r 
         
        
          ( 
         
        
          C 
         
        
          ) 
         
        
          1 
         
         
         
          
          
            ∂ 
           
          
            [ 
           
          
            T 
           
          
            r 
           
          
            ( 
           
           
           
             C 
            
           
             2 
            
           
          
            ) 
           
          
            ] 
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
        
          = 
         
        
          2 
         
         
         
           C 
          
         
           T 
          
         
        
          = 
         
        
          2 
         
        
          C 
         
         
         
          
          
            ∂ 
           
          
            [ 
           
          
            T 
           
          
            r 
           
          
            ( 
           
           
           
             C 
            
           
             3 
            
           
          
            ) 
           
          
            ] 
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
        
          = 
         
        
          3 
         
        
          ( 
         
         
         
           C 
          
         
           2 
          
         
         
         
           ) 
          
         
           T 
          
         
        
          = 
         
        
          3 
         
         
         
           C 
          
         
           2 
          
         
        
       
         \frac{\partial Tr(C)}{\partial C} = 1 \\ \frac{\partial [Tr(C)]^2}{\partial C}=2Tr(C) 1 \\ \frac{\partial [Tr(C^2)]}{\partial C}=2C^T=2C \\ \frac{\partial [Tr(C^3)]}{\partial C}=3(C^2)^T=3C^2 
        
       
     ∂C∂Tr(C)=1∂C∂[Tr(C)]2=2Tr(C)1∂C∂[Tr(C2)]=2CT=2C∂C∂[Tr(C3)]=3(C2)T=3C2
张量的范数的微分:
  
      
       
        
         
          
          
            ∂ 
           
          
            ∣ 
           
          
            ∣ 
           
          
            C 
           
          
            ∣ 
           
          
            ∣ 
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
        
          = 
         
         
          
          
            ∂ 
           
           
            
            
              C 
             
            
              : 
             
            
              C 
             
            
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
        
          = 
         
         
          
          
            ∂ 
           
          
            ( 
           
           
            
            
              T 
             
            
              r 
             
            
              ( 
             
            
              C 
             
            
              ⋅ 
             
             
             
               C 
              
             
               T 
              
             
            
              ) 
             
            
           
          
            ) 
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
         
        
          = 
         
         
          
          
            ∂ 
           
           
            
            
              T 
             
            
              r 
             
            
              ( 
             
             
             
               C 
              
             
               2 
              
             
            
              ) 
             
            
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
        
          = 
         
         
         
           1 
          
         
           2 
          
         
        
          [ 
         
        
          T 
         
        
          r 
         
        
          ( 
         
         
         
           C 
          
         
           2 
          
         
        
          ) 
         
         
         
           ] 
          
          
          
            − 
           
           
           
             1 
            
           
             2 
            
           
          
         
        
          [ 
         
        
          T 
         
        
          r 
         
        
          ( 
         
         
         
           C 
          
         
           2 
          
         
        
          ) 
         
         
         
           ] 
          
          
          
            , 
           
          
            C 
           
          
         
         
        
          = 
         
         
         
           1 
          
         
           2 
          
         
        
          [ 
         
        
          T 
         
        
          r 
         
        
          ( 
         
         
         
           C 
          
         
           2 
          
         
        
          ) 
         
         
         
           ] 
          
          
          
            − 
           
           
           
             1 
            
           
             2 
            
           
          
         
        
          2 
         
        
          C 
         
        
       
         \frac{\partial ||C||}{\partial C}=\frac{\partial \sqrt{C:C}}{\partial C} = \frac{\partial (\sqrt{Tr(C\cdot C^T)})}{\partial C} \\= \frac{\partial \sqrt{Tr(C^2)}}{\partial C}=\frac{1}{2}[Tr(C^2)]^{-\frac{1}{2}}[Tr(C^2)]_{,C}\\=\frac{1}{2}[Tr(C^2)]^{-\frac{1}{2}}2C 
        
       
     ∂C∂∣∣C∣∣=∂C∂C:C=∂C∂(Tr(C⋅CT))=∂C∂Tr(C2)=21[Tr(C2)]−21[Tr(C2)],C=21[Tr(C2)]−212C
∂ ∣ ∣ C ∣ ∣ ∂ C = C T r ( C 2 ) = C ∣ ∣ C ∣ ∣ \frac{\partial ||C||}{\partial C} = \frac{C}{\sqrt{Tr(C^2)}}=\frac{C}{||C||} ∂C∂∣∣C∣∣=Tr(C2)C=∣∣C∣∣C
有趣的微分:
 
张量的逆的微分:
 由于:  
      
       
        
         
          
          
            ∂ 
           
          
            1 
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
        
          = 
         
         
          
          
            ∂ 
           
          
            ( 
           
           
           
             C 
            
            
            
              − 
             
            
              1 
             
            
           
          
            ⋅ 
           
          
            C 
           
          
            ) 
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
        
          = 
         
        
          0 
         
        
       
         \frac{\partial 1}{\partial C}=\frac{\partial (C^{-1}\cdot C)}{\partial C}= 0 
        
       
     ∂C∂1=∂C∂(C−1⋅C)=0
 
 由于:  
     
      
       
        
        
          C 
         
         
         
           q 
          
         
           j 
          
         
        
       
         = 
        
        
        
          1 
         
        
          2 
         
        
       
         ( 
        
        
        
          C 
         
         
         
           q 
          
         
           j 
          
         
        
       
         + 
        
        
        
          C 
         
         
         
           j 
          
         
           q 
          
         
        
       
         ) 
        
       
      
        C_{qj}= \frac{1}{2}(C_{qj}+C_{jq}) 
       
      
    Cqj=21(Cqj+Cjq)
 
 张量形式:
  
      
       
        
         
          
          
            ∂ 
           
           
           
             C 
            
            
            
              − 
             
            
              1 
             
            
           
          
          
          
            ∂ 
           
          
            C 
           
          
         
        
          = 
         
         
         
           1 
          
         
           2 
          
         
        
          [ 
         
         
         
           C 
          
          
          
            − 
           
          
            1 
           
          
         
         
         
           ⨂ 
          
         
           ‾ 
          
         
         
         
           C 
          
          
          
            − 
           
          
            1 
           
          
         
        
          + 
         
         
         
           C 
          
          
          
            − 
           
          
            1 
           
          
         
         
         
           ⨂ 
          
         
           ‾ 
          
         
         
         
           C 
          
          
          
            − 
           
          
            1 
           
          
         
        
          ] 
         
        
       
         \frac{\partial C^{-1}}{\partial C}=\frac{1}{2}[C^{-1}\overline \bigotimes C^{-1}+C^{-1} \underline \bigotimes C^{-1}] 
        
       
     ∂C∂C−1=21[C−1⨂C−1+C−1⨂C−1]
NOTE: 如果C不是对称的,那么
  
      
       
        
         
          
          
            ∂ 
           
           
           
             C 
            
            
            
              i 
             
            
              q 
             
            
            
            
              − 
             
            
              1 
             
            
           
          
          
          
            ∂ 
           
           
           
             C 
            
            
            
              k 
             
            
              l 
             
            
           
          
         
         
         
           δ 
          
          
          
            q 
           
          
            r 
           
          
         
        
          = 
         
        
          − 
         
         
         
           C 
          
          
          
            i 
           
          
            q 
           
          
          
          
            − 
           
          
            1 
           
          
         
         
          
          
            ∂ 
           
           
           
             C 
            
            
            
              q 
             
            
              j 
             
            
           
          
          
          
            ∂ 
           
           
           
             C 
            
            
            
              k 
             
            
              l 
             
            
           
          
         
         
         
           C 
          
          
          
            j 
           
          
            r 
           
          
          
          
            − 
           
          
            1 
           
          
         
        
          = 
         
        
          − 
         
         
         
           C 
          
          
          
            i 
           
          
            q 
           
          
          
          
            − 
           
          
            1 
           
          
         
         
         
           δ 
          
          
          
            q 
           
          
            k 
           
          
         
         
         
           δ 
          
          
          
            j 
           
          
            l 
           
          
         
         
         
           C 
          
          
          
            j 
           
          
            r 
           
          
          
          
            − 
           
          
            1 
           
          
         
        
          = 
         
        
          − 
         
         
         
           C 
          
          
          
            i 
           
          
            k 
           
          
          
          
            − 
           
          
            1 
           
          
         
         
         
           C 
          
          
          
            l 
           
          
            r 
           
          
          
          
            − 
           
          
            1 
           
          
         
        
       
         \frac{\partial C_{iq}^{-1}}{\partial C_{kl}}\delta_{qr}=-C_{iq}^{-1}\frac{\partial C_{qj}}{\partial C_{kl}}C_{jr}^{-1}=-C_{iq}^{-1}\delta_{qk}\delta_{jl}C_{jr}^{-1} =-C_{ik}^{-1}C_{lr}^{-1} 
        
       
     ∂Ckl∂Ciq−1δqr=−Ciq−1∂Ckl∂CqjCjr−1=−Ciq−1δqkδjlCjr−1=−Cik−1Clr−1
 不是对称的
不变量的偏微分
 
     
      
       
        
        
          I 
         
        
          T 
         
        
       
      
        I_T 
       
      
    IT 的微分:
  
      
       
        
         
          
          
            ∂ 
           
           
           
             I 
            
           
             T 
            
           
          
          
          
            ∂ 
           
          
            T 
           
          
         
        
          = 
         
         
          
          
            ∂ 
           
          
            T 
           
          
            r 
           
          
            ( 
           
          
            T 
           
          
            ) 
           
          
          
          
            ∂ 
           
          
            T 
           
          
         
        
          = 
         
        
          T 
         
        
          r 
         
        
          ( 
         
        
          T 
         
         
         
           ) 
          
          
          
            , 
           
          
            T 
           
          
         
        
          = 
         
        
          1 
         
        
       
         \frac{\partial I_T}{\partial T}=\frac{\partial Tr(T)}{\partial T} =Tr(T)_{,T}=1 
        
       
     ∂T∂IT=∂T∂Tr(T)=Tr(T),T=1
 
     
      
       
       
         I 
        
        
        
          I 
         
        
          T 
         
        
       
      
        II_T 
       
      
    IIT 的微分:
 
应用Cayley-Hamilton定理:
 
 将上式T表达式,代入 
     
      
       
       
         I 
        
        
        
          I 
         
        
          T 
         
        
       
      
        II_T 
       
      
    IIT的表达式:
 
第三不变量 
     
      
       
       
         I 
        
       
         I 
        
        
        
          I 
         
        
          T 
         
        
       
      
        III_T 
       
      
    IIIT的微分:
 
 再次应用Cayley-Hamilton定理:
 
 转置:
 
 通过比较,可以求出另一种表示 
     
      
       
       
         I 
        
       
         I 
        
        
        
          I 
         
        
          T 
         
        
       
      
        III_T 
       
      
    IIIT的表达式:
  
      
       
        
         
          
          
            ∂ 
           
          
            I 
           
          
            I 
           
           
           
             I 
            
           
             T 
            
           
          
          
          
            ∂ 
           
          
            T 
           
          
         
        
          = 
         
        
          ( 
         
        
          I 
         
        
          I 
         
         
         
           I 
          
         
           T 
          
         
         
         
           T 
          
          
          
            − 
           
          
            1 
           
          
         
         
         
           ) 
          
         
           T 
          
         
        
          = 
         
        
          I 
         
        
          I 
         
         
         
           I 
          
         
           T 
          
         
         
         
           T 
          
          
          
            − 
           
          
            T 
           
          
         
        
       
         \frac{\partial III_T}{\partial T}=(III_T T^{-1})^T=III_T T^{-T} 
        
       
     ∂T∂IIIT=(IIITT−1)T=IIITT−T
张量的时间偏导
定义:
  
      
       
        
         
         
           D 
          
          
          
            D 
           
          
            t 
           
          
         
        
          T 
         
        
          = 
         
         
         
           T 
          
         
           ˙ 
          
         
         
         
          
          
            D 
           
          
            2 
           
          
          
          
            D 
           
           
           
             t 
            
           
             2 
            
           
          
         
        
          = 
         
         
         
           T 
          
         
           ¨ 
          
         
        
       
         \frac{D}{Dt}T = \dot T \quad \frac{D^2}{Dt^2}=\ddot T 
        
       
     DtDT=T˙Dt2D2=T¨
张量的行列式的时间偏导:
  
      
       
        
         
         
           D 
          
          
          
            D 
           
          
            t 
           
          
         
        
          [ 
         
        
          det 
         
        
           
         
        
          T 
         
        
          ] 
         
        
          = 
         
         
          
          
            D 
           
           
           
             T 
            
            
            
              i 
             
            
              j 
             
            
           
          
          
          
            D 
           
          
            t 
           
          
         
        
          c 
         
        
          o 
         
        
          f 
         
        
          ( 
         
        
          T 
         
        
          ) 
         
        
       
         \frac{D}{Dt}[\det T] = \frac{DT_{ij}}{Dt}cof (T) 
        
       
     DtD[detT]=DtDTijcof(T)
其中, c o f ( T ) cof (T) cof(T) 是T的余子式, [ c o f [ T i j ] ] T = det  ( T ) ( T − 1 ) i j [cof[T_{ij}]]^T = \det (T )(T^{-1})_{ij} [cof[Tij]]T=det(T)(T−1)ij
问题1.38 考虑 J = [ det  b ] 1 2 = ( I I I b ) 1 2 J = [\det b]^{\frac{1}{2}} = (III_b)^{\frac{1}{2}} J=[detb]21=(IIIb)21, b b b是二阶对称张量,求出 J J J 和 ln  J \ln J lnJ的关于 b b b 的偏导

球张量和偏张量
任意一个张量都可以分解成球张量和偏张量:
  
      
       
        
        
          T 
         
        
          = 
         
         
         
           T 
          
          
          
            s 
           
          
            p 
           
          
            h 
           
          
         
        
          + 
         
         
         
           T 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          = 
         
         
          
          
            T 
           
          
            r 
           
          
            ( 
           
          
            T 
           
          
            ) 
           
          
         
           3 
          
         
        
          1 
         
        
          + 
         
         
         
           T 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          = 
         
         
          
          
            I 
           
          
            T 
           
          
         
           3 
          
         
        
          1 
         
        
          + 
         
         
         
           T 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          = 
         
         
         
           T 
          
         
           m 
          
         
        
          1 
         
        
          + 
         
         
         
           T 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
       
         T = T^{sph}+T^{dev}=\frac{Tr(T)}{3}1+T^{dev}=\frac{I_T}{3}1+T^{dev}=T_m1+T^{dev} 
        
       
     T=Tsph+Tdev=3Tr(T)1+Tdev=3IT1+Tdev=Tm1+Tdev
所以,偏张量的定义:
  
      
       
        
         
         
           T 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          = 
         
        
          T 
         
        
          − 
         
         
          
          
            T 
           
          
            r 
           
          
            ( 
           
          
            T 
           
          
            ) 
           
          
         
           3 
          
         
        
          1 
         
        
          = 
         
        
          T 
         
        
          − 
         
         
         
           T 
          
         
           m 
          
         
        
          1 
         
        
       
         T^{dev} = T - \frac{Tr(T)}{3}1=T - T_m1 
        
       
     Tdev=T−3Tr(T)1=T−Tm1
由于张量T是对称的, 
     
      
       
       
         T 
        
       
         = 
        
        
        
          T 
         
        
          T 
         
        
       
      
        T = T^T 
       
      
    T=TT,所以:
 
 在笛卡尔坐标系表示球张量和偏张量:
 
 接下来介绍根据张量T主不变量的偏张量不变量
偏张量的第一不变量

 任意偏张量的迹都为0
偏张量的第二不变量
在主空间中,张量T的分量是:
 
 主不变量为: 
     
      
       
        
        
          I 
         
        
          T 
         
        
       
         = 
        
        
        
          T 
         
        
          1 
         
        
       
         + 
        
        
        
          T 
         
        
          2 
         
        
       
         + 
        
        
        
          T 
         
        
          3 
         
        
       
         ; 
        
        
       
         I 
        
        
        
          I 
         
        
          T 
         
        
       
         = 
        
        
        
          T 
         
        
          1 
         
        
        
        
          T 
         
        
          2 
         
        
       
         + 
        
        
        
          T 
         
        
          2 
         
        
        
        
          T 
         
        
          3 
         
        
       
         + 
        
        
        
          T 
         
        
          3 
         
        
        
        
          T 
         
        
          1 
         
        
       
         ; 
        
        
       
         I 
        
       
         I 
        
        
        
          I 
         
        
          T 
         
        
       
         = 
        
        
        
          T 
         
        
          1 
         
        
        
        
          T 
         
        
          2 
         
        
        
        
          T 
         
        
          3 
         
        
       
      
        I_T = T_1+T_2+T_3; \quad II_T = T_1T_2+T_2T_3+T_3T_1; \quad III_T=T_1T_2T_3 
       
      
    IT=T1+T2+T3;IIT=T1T2+T2T3+T3T1;IIIT=T1T2T3
那么偏张量  
     
      
       
        
        
          T 
         
         
         
           d 
          
         
           e 
          
         
           v 
          
         
        
       
         = 
        
       
         T 
        
       
         − 
        
        
        
          T 
         
        
          m 
         
        
       
         1 
        
       
      
        T^{dev} = T - T_m1 
       
      
    Tdev=T−Tm1 在主空间的分量为:
 
 所以,偏张量的第二不变量是:
 
 同样地,也可以用从第二不变量的定义出发证明:
 定义:
 
 那么偏张量的第二不变量为:
 
 因为不变量不随坐标系的改变而改变,所以在主空间和一般的笛卡尔坐标系中的表达式一样
可以观察到: 
     
      
       
       
         T 
        
       
         r 
        
       
         ( 
        
        
        
          T 
         
        
          2 
         
        
       
         ) 
        
       
         = 
        
        
        
          T 
         
        
          1 
         
        
          2 
         
        
       
         + 
        
        
        
          T 
         
        
          2 
         
        
          2 
         
        
       
         + 
        
        
        
          T 
         
        
          3 
         
        
          2 
         
        
       
         = 
        
        
        
          I 
         
        
          T 
         
        
          2 
         
        
       
         − 
        
       
         2 
        
       
         I 
        
        
        
          I 
         
        
          T 
         
        
       
      
        Tr(T^2) = T_1^2 + T_2^2 + T_3^2=I_T^2-2II_T 
       
      
    Tr(T2)=T12+T22+T32=IT2−2IIT,(问题1.31),偏张量的第二不变量公式变为用张量T的第一和第二不变量表示的形式:
  
      
       
        
        
          I 
         
         
         
           I 
          
          
          
            T 
           
           
           
             d 
            
           
             e 
            
           
             v 
            
           
          
         
        
          = 
         
         
         
           1 
          
         
           2 
          
         
        
          [ 
         
        
          − 
         
         
         
           I 
          
         
           T 
          
         
           2 
          
         
        
          + 
         
        
          2 
         
        
          I 
         
         
         
           I 
          
         
           T 
          
         
        
          + 
         
         
          
          
            I 
           
          
            T 
           
          
            2 
           
          
         
           3 
          
         
        
          ] 
         
        
          = 
         
         
         
           1 
          
         
           2 
          
         
        
          [ 
         
        
          2 
         
        
          I 
         
         
         
           I 
          
         
           T 
          
         
        
          − 
         
         
          
          
            2 
           
           
           
             I 
            
           
             T 
            
           
             2 
            
           
          
         
           3 
          
         
        
          ] 
         
        
          = 
         
         
         
           1 
          
         
           3 
          
         
        
          ( 
         
        
          3 
         
        
          I 
         
         
         
           I 
          
         
           T 
          
         
        
          − 
         
         
         
           I 
          
         
           T 
          
         
           2 
          
         
        
          ) 
         
        
       
         II_{T^{dev}}=\frac{1}{2}[-I_T^2+2II_T+\frac{I_T^2}{3}]=\frac{1}{2}[2II_T-\frac{2I_T^2}{3}]=\frac{1}{3}(3II_T-I_T^2) 
        
       
     IITdev=21[−IT2+2IIT+3IT2]=21[2IIT−32IT2]=31(3IIT−IT2)
另一种形式是用偏张量分量表示的形式:
  
      
       
        
        
          I 
         
         
         
           I 
          
          
          
            T 
           
           
           
             d 
            
           
             e 
            
           
             v 
            
           
          
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           2 
          
         
        
          T 
         
        
          r 
         
        
          [ 
         
        
          ( 
         
         
         
           T 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          ] 
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           2 
          
         
        
          T 
         
        
          r 
         
        
          [ 
         
        
          ( 
         
         
         
           T 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          ⋅ 
         
         
         
           T 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          ) 
         
        
          ] 
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           2 
          
         
         
         
           T 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          ⋅ 
         
        
          ⋅ 
         
         
         
           T 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           2 
          
         
         
         
           T 
          
          
          
            i 
           
          
            j 
           
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           T 
          
          
          
            j 
           
          
            i 
           
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
       
         II_{T^{dev}}=-\frac{1}{2}Tr[(T^{dev})^2]=-\frac{1}{2}Tr[(T^{dev}\cdot T^{dev})]=-\frac{1}{2}T^{dev}\cdot \cdot T^{dev}=-\frac{1}{2}T_{ij}^{dev}T_{ji}^{dev} 
        
       
     IITdev=−21Tr[(Tdev)2]=−21Tr[(Tdev⋅Tdev)]=−21Tdev⋅⋅Tdev=−21TijdevTjidev
展开,得:
  
      
       
        
        
          I 
         
         
         
           I 
          
          
          
            T 
           
           
           
             d 
            
           
             e 
            
           
             v 
            
           
          
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           2 
          
         
        
          [ 
         
        
          ( 
         
         
         
           T 
          
         
           11 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           22 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           33 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          2 
         
        
          ( 
         
         
         
           T 
          
         
           12 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          2 
         
        
          ( 
         
         
         
           T 
          
         
           13 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          2 
         
        
          ( 
         
         
         
           T 
          
         
           23 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          ] 
         
        
       
         II_{T^{dev}}=-\frac{1}{2}[(T_{11}^{dev})^2+(T_{22}^{dev})^2+(T_{33}^{dev})^2+2(T_{12}^{dev})^2+2(T_{13}^{dev})^2+2(T_{23}^{dev})^2] 
        
       
     IITdev=−21[(T11dev)2+(T22dev)2+(T33dev)2+2(T12dev)2+2(T13dev)2+2(T23dev)2]
变换一下:
  
      
       
        
         
         
           T 
          
         
           11 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           22 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           33 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          = 
         
        
          − 
         
        
          2 
         
        
          I 
         
         
         
           I 
          
          
          
            T 
           
           
           
             d 
            
           
             e 
            
           
             v 
            
           
          
         
        
          − 
         
        
          2 
         
        
          ( 
         
         
         
           T 
          
         
           12 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          − 
         
        
          2 
         
        
          ( 
         
         
         
           T 
          
         
           13 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          − 
         
        
          2 
         
        
          ( 
         
         
         
           T 
          
         
           23 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
       
         T_{11}^{dev})^2+(T_{22}^{dev})^2+(T_{33}^{dev})^2=-2II_{T^{dev}}-2(T_{12}^{dev})^2-2(T_{13}^{dev})^2-2(T_{23}^{dev})^2 
        
       
     T11dev)2+(T22dev)2+(T33dev)2=−2IITdev−2(T12dev)2−2(T13dev)2−2(T23dev)2
另外,在主空间的分量:
  
      
       
        
        
          I 
         
         
         
           I 
          
          
          
            T 
           
           
           
             d 
            
           
             e 
            
           
             v 
            
           
          
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           2 
          
         
         
         
           T 
          
          
          
            i 
           
          
            j 
           
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           T 
          
          
          
            j 
           
          
            i 
           
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           2 
          
         
        
          [ 
         
        
          ( 
         
         
         
           T 
          
         
           1 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           2 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           3 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          ] 
         
        
       
         II_{T^{dev}}=-\frac{1}{2}T_{ij}^{dev}T_{ji}^{dev}=-\frac{1}{2}[(T_{1}^{dev})^2+(T_{2}^{dev})^2+(T_{3}^{dev})^2] 
        
       
     IITdev=−21TijdevTjidev=−21[(T1dev)2+(T2dev)2+(T3dev)2]
或者:
 
 或者:
 
 将 
      
       
        
        
          I 
         
         
         
           I 
          
          
          
            T 
           
           
           
             d 
            
           
             e 
            
           
             v 
            
           
          
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           2 
          
         
         
         
           T 
          
          
          
            i 
           
          
            j 
           
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           T 
          
          
          
            j 
           
          
            i 
           
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           2 
          
         
        
          [ 
         
        
          ( 
         
         
         
           T 
          
         
           1 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           2 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           3 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          ] 
         
        
       
         II_{T^{dev}}=-\frac{1}{2}T_{ij}^{dev}T_{ji}^{dev}=-\frac{1}{2}[(T_{1}^{dev})^2+(T_{2}^{dev})^2+(T_{3}^{dev})^2] 
        
       
     IITdev=−21TijdevTjidev=−21[(T1dev)2+(T2dev)2+(T3dev)2]代入到以上式子:
  
      
       
        
        
          I 
         
         
         
           I 
          
          
          
            T 
           
           
           
             d 
            
           
             e 
            
           
             v 
            
           
          
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           6 
          
         
        
          [ 
         
        
          ( 
         
         
         
           T 
          
         
           22 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          − 
         
         
         
           T 
          
         
           33 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           11 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          − 
         
         
         
           T 
          
         
           33 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           11 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          − 
         
         
         
           T 
          
         
           22 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          ] 
         
        
          − 
         
        
          ( 
         
         
         
           T 
          
         
           12 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          − 
         
        
          ( 
         
         
         
           T 
          
         
           23 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          − 
         
        
          ( 
         
         
         
           T 
          
         
           13 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
       
         II_{T^{dev}}=-\frac{1}{6}[(T_{22}^{dev}-T_{33}^{dev})^2+(T_{11}^{dev}-T_{33}^{dev})^2+(T_{11}^{dev}-T_{22}^{dev})^2]-(T_{12}^{dev})^2-(T_{23}^{dev})^2-(T_{13}^{dev})^2 
        
       
     IITdev=−61[(T22dev−T33dev)2+(T11dev−T33dev)2+(T11dev−T22dev)2]−(T12dev)2−(T23dev)2−(T13dev)2
如果在主空间,则:
  
      
       
        
        
          I 
         
         
         
           I 
          
          
          
            T 
           
           
           
             d 
            
           
             e 
            
           
             v 
            
           
          
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           6 
          
         
        
          [ 
         
        
          ( 
         
         
         
           T 
          
         
           2 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          − 
         
         
         
           T 
          
         
           3 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           1 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          − 
         
         
         
           T 
          
         
           3 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          + 
         
        
          ( 
         
         
         
           T 
          
         
           1 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          − 
         
         
         
           T 
          
         
           2 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           ) 
          
         
           2 
          
         
        
          ] 
         
        
       
         II_{T^{dev}}=-\frac{1}{6}[(T_{2}^{dev}-T_{3}^{dev})^2+(T_{1}^{dev}-T_{3}^{dev})^2+(T_{1}^{dev}-T_{2}^{dev})^2] 
        
       
     IITdev=−61[(T2dev−T3dev)2+(T1dev−T3dev)2+(T1dev−T2dev)2]
偏张量的第三不变量
偏张量的第三部变量:
 
 另一个形式:
  
      
       
        
        
          I 
         
        
          I 
         
         
         
           I 
          
          
          
            T 
           
           
           
             d 
            
           
             e 
            
           
             v 
            
           
          
         
        
          = 
         
         
         
           T 
          
         
           1 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           T 
          
         
           2 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           T 
          
         
           3 
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
          = 
         
         
         
           1 
          
         
           3 
          
         
         
         
           T 
          
          
          
            i 
           
          
            j 
           
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           T 
          
          
          
            j 
           
          
            k 
           
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
         
         
           T 
          
          
          
            k 
           
          
            l 
           
          
          
          
            d 
           
          
            e 
           
          
            v 
           
          
         
        
       
         III_{T^{dev}}=T_{1}^{dev}T_{2}^{dev}T_{3}^{dev}=\frac{1}{3}T_{ij}^{dev}T_{jk}^{dev}T_{kl}^{dev} 
        
       
     IIITdev=T1devT2devT3dev=31TijdevTjkdevTkldev
问题1.39 σ \sigma σ是对称二阶张量, s = σ d e v s = \sigma^{dev} s=σdev是一个偏张量,证明: s : ∂ s ∂ σ = s s:\frac{\partial s}{\partial \sigma}=s s:∂σ∂s=s,并证明 σ \sigma σ和 σ d e v \sigma^{dev} σdev是同轴张量

 参考教材:
 Eduardo W.V. Chaves, Notes On Continuum Mechanics



![[Python从零到壹] 六十六.图像识别及经典案例篇之基于机器学习的图像分类](https://img-blog.csdnimg.cn/139d1b6497224e069e1449a76536d36b.png#pic_center)















