目录
学习目标
学习内容
理论基础
509. 斐波那契数
70. 爬楼梯
746. 使用最小花费爬楼梯
学习目标
- 理论基础
- 509. 斐波那契数
- 70. 爬楼梯
- 746. 使用最小花费爬楼梯
学习内容
理论基础
problems/动态规划理论基础.md · programmercarl/leetcode-master(代码随想录出品) - Gitee.com
https://gitee.com/programmercarl/leetcode-master/blob/master/problems/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.md
509. 斐波那契数
509. 斐波那契数 - 力扣(LeetCode)
https://leetcode.cn/problems/fibonacci-number/
class Solution:
    def fib(self, n: int) -> int:
        def dfs(i):
            if i<2:return i
            return dfs(i-1)+dfs(i-2)
        return dfs(n)class Solution:
    def fib(self, n: int) -> int:
        @cache
        def dfs(i):
            if i<2:return i
            return dfs(i-1)+dfs(i-2)
        return dfs(n)class Solution:
    def fib(self, n: int) -> int:
        if n<2:return n
        f = [0]*(n+1)
        f[1]=1
        for i in range(2,n+1):
            f[i] = f[i-1]+f[i-2]
        return f[n]class Solution:
    def fib(self, n: int) -> int:
        if n<2:return n
        a = 0
        b = 1
        for i in range(2,n+1):
            a,b=b,a+b
        return b70. 爬楼梯
70. 爬楼梯 - 力扣(LeetCode)
https://leetcode.cn/problems/climbing-stairs/
class Solution:
    def climbStairs(self, n: int) -> int:
        @cache
        def dfs(i):
            if i<2:return 1
            return dfs(i-1)+dfs(i-2)
        return dfs(n)class Solution:
    def climbStairs(self, n: int) -> int:
        if n<2:return 1
        f = [1]*(n+1)
        for i in range(2,n+1):
            f[i]=f[i-1]+f[i-2]
        return f[n] 746. 使用最小花费爬楼梯
746. 使用最小花费爬楼梯 - 力扣(LeetCode)
https://leetcode.cn/problems/min-cost-climbing-stairs/
class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        @cache
        def dfs(i):
            if i<2:return 0
            return min(dfs(i-1)+cost[i-1],dfs(i-2)+cost[i-2])
        return dfs(len(cost))class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        n = len(cost)
        f = [0]*(n+1)
        for i in range(2,n+1):
            f[i] = min(f[i-1]+cost[i-1],f[i-2]+cost[i-2])
        return f[n]












