
目录
1. 杨辉三角 🌟
2. 最长回文子串 🌟🌟
3. 逆波兰表达式求值 🌟🌟
🌟 每日一练刷题专栏 🌟
Golang每日一练 专栏
Python每日一练 专栏
C/C++每日一练 专栏
Java每日一练 专栏
1. 杨辉三角
给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。
在「杨辉三角」中,每个数是它左上方和右上方的数的和。

示例 1:
输入: numRows = 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
示例 2:
输入: numRows = 1 输出: [[1]]
提示:
- 1 <= numRows <= 30
出处:
https://edu.csdn.net/practice/26235120
代码:
from typing import List
class Solution:
    def generate(self, numRows: int) -> List[List[int]]:
        if numRows == 0:
            return []
        if numRows == 1:
            return [[1]]
        if numRows == 2:
            return [[1], [1, 1]]
        result = [[1], [1, 1]] + [[] for i in range(numRows - 2)]
        for i in range(2, numRows):
            for j in range(i + 1):
                if j == 0 or j == i:
                    result[i].append(1)
                else:
                    result[i].append(result[i - 1][j - 1] + result[i - 1][j])
        return result
if __name__ == "__main__":
    s = Solution()
    for i in range(1,6):
        print(s.generate(i))
输出:
[[1]]
 [[1], [1, 1]]
 [[1], [1, 1], [1, 2, 1]]
 [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1]]
 [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]
2. 最长回文子串
给你一个字符串 s,找到 s 中最长的回文子串。
示例 1:
输入:s = "babad" 输出:"bab" 解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd" 输出:"bb"
示例 3:
输入:s = "a" 输出:"a"
示例 4:
输入:s = "ac" 输出:"a"
提示:
- 1 <= s.length <= 1000
- s仅由数字和英文字母(大写和/或小写)组成
出处:
https://edu.csdn.net/practice/26235121
代码:
class Solution:
    def longestPalindrome(self, s: str) -> str:
        ti = 0
        maxlen = 0
        i = 0
        while i < len(s):
            t = 1
            while t <= i and i + t < len(s):
                if s[i + t] == s[i - t]:
                    t += 1
                else:
                    break
            t -= 1
            if 2 * t + 1 > maxlen:
                ti = i - t
                maxlen = 2 * t + 1
            i += 1
        i = 0
        while i < len(s):
            t = 1
            while t <= i + 1 and i + t < len(s):
                if s[i - t + 1] == s[i + t]:
                    t += 1
                else:
                    break
            t -= 1
            if 2 * t > maxlen:
                ti = i - t + 1
                maxlen = 2 * t
            i += 1
        return s[ti:ti+maxlen]
# %%
s = Solution()
print(s.longestPalindrome('babad'))
print(s.longestPalindrome('cbbd'))
输出:
bab
 bb
3. 逆波兰表达式求值
根据 逆波兰表示法,求表达式的值。
有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
- 整数除法只保留整数部分。
- 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入:tokens = ["2","1","+","3","*"] 输出:9 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"] 输出:6 解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"] 输出:22 解释: 该算式转化为常见的中缀算术表达式为: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
提示:
- 1 <= tokens.length <= 10^4
- tokens[i]要么是一个算符(- "+"、- "-"、- "*"或- "/"),要么是一个在范围- [-200, 200]内的整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 )。
- 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * )。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + *也可以依据次序计算出正确结果。
- 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
出处:
https://edu.csdn.net/practice/26235122
代码:
class Solution(object):
    def evalRPN(self, tokens):
        """
        :type tokens: List[str]
        :rtype: int
        """
        stack = []
        for token in tokens:
            if token not in ["+", "-", "*", "/"]:
                stack.append(int(token))
            else:
                num1 = stack.pop()
                num2 = stack.pop()
                if token == "+":
                    stack.append(num1 + num2)
                elif token == "-":
                    stack.append(num2 - num1)
                elif token == "*":
                    stack.append(num1 * num2)
                elif token == "/":
                    if num1 * num2 < 0:
                        result = -((-num2) // num1)
                        stack.append(result)
                    else:
                        stack.append(num2 // num1)
            #print(stack)
        return stack.pop()
# %%
s = Solution()
print(s.evalRPN(tokens = ["2","1","+","3","*"]))
print(s.evalRPN(tokens = ["4","13","5","/","+"]))
tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
print(s.evalRPN(tokens))
输出:
9
 6
 22
🌟 每日一练刷题专栏 🌟
✨ 持续,努力奋斗做强刷题搬运工!
👍 点赞,你的认可是我坚持的动力!
🌟 收藏,你的青睐是我努力的方向!
✎ 评论,你的意见是我进步的财富!
☸ 主页:https://hannyang.blog.csdn.net/
|  | Golang每日一练 专栏 | 
|  | Python每日一练 专栏 | 
|  | C/C++每日一练 专栏 | 
|  | Java每日一练 专栏 | 



















