四、线程安全,synchronized,volatile(JMM)【4/12 5/12 6/12】【多线程】

news2025/6/9 14:01:09

4. 多线程带来的的风险-线程安全 (重点)

在这里插入图片描述

4.1 观察线程不安全

static class Counter {
    public int count = 0;
    void increase() {
        count++;
   }
}
public static void main(String[] args) throws InterruptedException {
    final Counter counter = new Counter();
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 50000; i++) {
            counter.increase();
       }
   });
    Thread t2 = new Thread(() -> {
        for (int i = 0; i < 50000; i++) {
            counter.increase();
       }
   });
    t1.start();
    t2.start();
    t1.join();
    t2.join();
    System.out.println(counter.count);
}

大家观察下是否适用多线程的现象是否一致?同时尝试思考下为什么会有这样的现象发生呢?

原因是 1.load 2. add 3. save

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意:可能会导致 小于5w

4.2 线程安全的概念

想给出一个线程安全的确切定义是复杂的,但我们可以这样认为:
如果多线程环境下代码运行的结果是符合我们预期的,即在单线程环境应该的结果,则说这个程序是线程安全的

4.3 线程不安全的原因

★1. 修改共享数据(多个线程修改同一个变量)

上面的线程不安全的代码中, 涉及到多个线程针对 counter.count 变量进行修改.
此时这个 counter.count 是一个多个线程都能访问到的 “共享数据”在这里插入图片描述
counter.count 这个变量就是在堆上. 因此可以被多个线程共享访问

★2. 操作不是原子性

在这里插入图片描述

在这里插入图片描述
什么是原子性

我们把一段代码想象成一个房间,每个线程就是要进入这个房间的人。如果没有任何机制保证,A进入房间之后,还没有出来;B 是不是也可以进入房间,打断 A 在房间里的隐私。这个就是不具备原子性的。
那我们应该如何解决这个问题呢?是不是只要给房间加一把锁,A 进去就把门锁上,其他人是不是就进不来了。这样就保证了这段代码的原子性了。
有时也把这个现象叫做同步互斥,表示操作是互相排斥的

一条 java 语句不一定是原子的,也不一定只是一条指令

比如刚才我们看到的 n++,其实是由三步操作组成的:

  1. 从内存把数据读到 CPU
  2. 进行数据更新
  3. 把数据写回到 CPU

不保证原子性会给多线程带来什么问题

如果一个线程正在对一个变量操作,中途其他线程插入进来了,如果这个操作被打断了,结果就可能是错误的。
这点也和线程的抢占式调度密切相关. 如果线程不是 “抢占” 的, 就算没有原子性, 也问题不大.

★3. 可见性

可见性指, 一个线程对共享变量值的修改,能够及时地被其他线程看到

Java 内存模型 (JMM): Java虚拟机规范中定义了Java内存模型.
目的是屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的并发效果.

在这里插入图片描述

  • 线程之间的共享变量存在 主内存 (Main Memory).
  • 每一个线程都有自己的 “工作内存” (Working Memory) .
  • 当线程要读取一个共享变量的时候, 会先把变量从主内存拷贝到工作内存, 再从工作内存读取数据.
  • 当线程要修改一个共享变量的时候, 也会先修改工作内存中的副本, 再同步回主内存

由于每个线程有自己的工作内存, 这些工作内存中的内容相当于同一个共享变量的 “副本”. 此时修改线程1 的工作内存中的值, 线程2 的工作内存不一定会及时变化

  1. 初始情况下, 两个线程的工作内存内容一致在这里插入图片描述
  2. 一旦线程1 修改了 a 的值, 此时主内存不一定能及时同步. 对应的线程2 的工作内存的 a 的值也不一定能及时同步.在这里插入图片描述
    这个时候代码中就容易出现问题

此时引入了两个问题:

  • 为啥要整这么多内存?
  • 为啥要这么麻烦的拷来拷去?
  1. 为啥整这么多内存?
    实际并没有这么多 “内存”. 这只是 Java 规范中的一个术语, 是属于 “抽象” 的叫法.
    所谓的 “主内存” 才是真正硬件角度的 “内存”. 而所谓的 “工作内存”, 则是指 CPU 的寄存器和高速缓存.
  2. 为啥要这么麻烦的拷来拷去?
    因为 CPU 访问自身寄存器的速度以及高速缓存的速度, 远远超过访问内存的速度(快了 3 - 4 个数量级, 也就是几千倍, 上万倍)

比如某个代码中要连续 10 次读取某个变量的值, 如果 10 次都从内存读, 速度是很慢的. 但是如果
只是第一次从内存读, 读到的结果缓存到 CPU 的某个寄存器中, 那么后 9 次读数据就不必直接访问
内存了. 效率就大大提高了

那么接下来问题又来了, 既然访问寄存器速度这么快, 还要内存干啥??
答案就是一个字: 贵

值的一提的是, 快和慢都是相对的. CPU 访问寄存器速度远远快于内存, 但是内存的访问速度又远远快于硬盘.
对应的, CPU 的价格最贵, 内存次之, 硬盘最便宜

★4. 代码顺序性

什么是代码重排序

一段代码是这样的:

  1. 去前台取下 U 盘
  2. 去教室写 10 分钟作业
  3. 去前台取下快递

如果是在单线程情况下,JVM、CPU指令集会对其进行优化,比如,按 1->3->2的方式执行,也是没问题,可以少跑一次前台。这种叫做指令重排序
编译器对于指令重排序的前提是 “保持逻辑不发生变化”. 这一点在单线程环境下比较容易判断, 但是在多线程环境下就没那么容易了, 多线程的代码执行复杂程度更高, 编译器很难在编译阶段对代码的执行效果进行预测, 因此激进的重排序很容易导致优化后的逻辑和之前不等价

重排序是一个比较复杂的话题, 涉及到 CPU 以及编译器的一些底层工作原理, 此处不做过多讨论

4.4 解决之前的线程不安全问题

这里用到的机制,我们马上会给大家解释

static class Counter {
    public int count = 0;
    synchronized void increase() {
        count++;
   }
}
public static void main(String[] args) throws InterruptedException {
    final Counter counter = new Counter();
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 50000; i++) {
            counter.increase();
       }
   });
    Thread t2 = new Thread(() -> {
        for (int i = 0; i < 50000; i++) {
            counter.increase();
       }
   });
    t1.start();
    t2.start();
    t1.join();
    t2.join();
    System.out.println(counter.count);
}

5. synchronized 关键字-监视器锁monitor lock

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.1 synchronized 的特性

1) 互斥

synchronized 会起到互斥效果, 某个线程执行到某个对象的 synchronized 中时, 其他线程如果也执行到同一个对象 synchronized 就会阻塞等待

进入 synchronized 修饰的代码块, 相当于 加锁
退出 synchronized 修饰的代码块, 相当于 解锁
在这里插入图片描述
synchronized用的锁是存在Java对象头里的。在这里插入图片描述

可以粗略理解成, 每个对象在内存中存储的时候, 都存有一块内存表示当前的 “锁定” 状态(类似于厕
所的 “有人/无人”).
如果当前是 “无人” 状态, 那么就可以使用, 使用时需要设为 “有人” 状态.
如果当前是 “有人” 状态, 那么其他人无法使用, 只能排队

在这里插入图片描述

理解 “阻塞等待”.
针对每一把锁, 操作系统内部都维护了一个等待队列. 当这个锁被某个线程占有的时候, 其他线程尝试进行加锁, 就加不上了, 就会阻塞等待, 一直等到之前的线程解锁之后, 由操作系统唤醒一个新的线程, 再来获取到这个锁.
注意:

  • 上一个线程解锁之后, 下一个线程并不是立即就能获取到锁. 而是要靠操作系统来 “唤醒”. 这
    也就是操作系统线程调度的一部分工作.
  • 假设有 A B C 三个线程, 线程 A 先获取到锁, 然后 B 尝试获取锁, 然后 C 再尝试获取锁, 此时 B 和 C 都在阻塞队列中排队等待. 但是当 A 释放锁之后, 虽然 B 比 C 先来的, 但是 B 不一定就能获取到锁, 而是和 C 重新竞争, 并不遵守先来后到的规则

synchronized的底层是使用操作系统的mutex lock实现的.

2) 刷新内存

synchronized 的工作过程:

  1. 获得互斥锁
  2. 从主内存拷贝变量的最新副本到工作的内存
  3. 执行代码
  4. 将更改后的共享变量的值刷新到主内存
  5. 释放互斥锁

3) 可重入

synchronized 同步块对同一条线程来说是可重入的,不会出现自己把自己锁死的问题;

理解 “把自己锁死”
一个线程没有释放锁, 然后又尝试再次加锁.在这里插入图片描述
按照之前对于锁的设定, 第二次加锁的时候, 就会阻塞等待. 直到第一次的锁被释放, 才能获取到第二个锁. 但是释放第一个锁也是由该线程来完成, 结果这个线程已经躺平了, 啥都不想干了, 也就无法进行解锁操作. 这时候就会 死锁.在这里插入图片描述
这样的锁称为 不可重入锁

Java 中的 synchronized 是 可重入锁, 因此没有上面的问题.

代码示例
在下面的代码中,

  • increase 和 increase2 两个方法都加了 synchronized, 此处的 synchronized 都是针对 this 当前对象加锁的.
  • 在调用 increase2 的时候, 先加了一次锁, 执行到 increase 的时候, 又加了一次锁. (上个锁还没释放, 相当于连续加两次锁)

这个代码是完全没问题的. 因为 synchronized 是可重入锁.

static class Counter {
    public int count = 0;
    synchronized void increase() {
        count++;
   }
    synchronized void increase2() {
        increase();
   }
}

在可重入锁的内部, 包含了 “线程持有者” 和 “计数器” 两个信息.

  • 如果某个线程加锁的时候, 发现锁已经被人占用, 但是恰好占用的正是自己, 那么仍然可以继续获取到锁, 并让计数器自增.
  • 解锁的时候计数器递减为 0 的时候, 才真正释放锁. (才能被别的线程获取到)

5.2 synchronized 使用示例

  • synchronized 本质上要修改指定对象的 “对象头”. 从使用角度来看, synchronized 也势必要搭配一个具体的对象来使用.

1) 直接修饰普通方法: 锁的 子类 对象(this对象)

public class SynchronizedDemo {
    public synchronized void methond() {
   }
}

2) 修饰静态方法: 锁的 类的对象 所有子类都会上锁

public class SynchronizedDemo {
    public synchronized static void method() {
   }
}

在这里插入图片描述

3) 修饰代码块: 明确指定锁哪个对象.

锁当前对象
在这里插入图片描述
在这里插入图片描述

public class SynchronizedDemo {
    public void method() {
        synchronized (this) {
            
       }
   }
}

锁类对象

public class SynchronizedDemo {
    public void method() {
        synchronized (SynchronizedDemo.class) {
       }
   }
}

我们重点要理解,synchronized 锁的是什么. 两个线程竞争同一把锁, 才会产生阻塞等待.
两个线程分别尝试获取两把不同的锁, 不会产生竞争.
在这里插入图片描述

4) 修饰类中的lock类对象

在这里插入图片描述

5) 修饰类的反射

在这里插入图片描述

5.3 Java 标准库中的线程安全类

Java 标准库中很多都是线程不安全的. 这些类可能会涉及到多线程修改共享数据, 又没有任何加锁措施在这里插入图片描述
但是还有一些是线程安全的. 使用了一些锁机制来控制.
在这里插入图片描述
在这里插入图片描述
StringBuffer 的核心方法都带有 synchronized .

还有的虽然没有加锁, 但是不涉及 “修改”, 仍然是线程安全的

  • String

5.4 可重入

在这里插入图片描述

在这里插入图片描述
不过 synchronized是可重入锁
在这里插入图片描述
在这里插入图片描述
不可重入锁的解决办法
在这里插入图片描述
在这里插入图片描述

6. volatile 关键字

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

volatile 能保证内存可见性
volatile 修饰的变量, 能够保证 “内存可见性”.
在这里插入图片描述

代码在写入 volatile 修饰的变量的时候

  • 改变线程工作内存中volatile变量副本的值
  • 将改变后的副本的值从工作内存刷新到主内存

代码在读取 volatile 修饰的变量的时候

  • 从主内存中读取volatile变量的最新值到线程的工作内存中
  • 从工作内存中读取volatile变量的副本
    前面我们讨论内存可见性时说了, 直接访问工作内存(实际是 CPU 的寄存器或者 CPU 的缓存), 速度非常快, 但是可能出现数据不一致的情况.
    加上 volatile , 强制读写内存. 速度是慢了, 但是数据变的更准确了.

代码示例

在这个代码中

  • 创建两个线程 t1 和 t2
  • t1 中包含一个循环, 这个循环以 flag == 0 为循环条件.
  • t2 中从键盘读入一个整数, 并把这个整数赋值给 flag.
  • 预期当用户输入非 0 的值的时候, t1 线程结束.
static class Counter {
    public int flag = 0; }
public static void main(String[] args) {
    Counter counter = new Counter();
    Thread t1 = new Thread(() -> {
        while (counter.flag == 0) {
            // do nothing
       }
        System.out.println("循环结束!");
   });
    Thread t2 = new Thread(() -> {
        Scanner scanner = new Scanner(System.in);
        System.out.println("输入一个整数:");
        counter.flag = scanner.nextInt();
   });
    t1.start();
    t2.start();
}
// 执行效果
// 当用户输入非0值时, t1 线程循环不会结束. (这显然是一个 bug)
  • t1 读的是自己工作内存中的内容.
  • 当 t2 对 flag 变量进行修改, 此时 t1 感知不到 flag 的变化

如果给 flag 加上 volatile

static class Counter {
    public volatile int flag = 0; }
// 执行效果
// 当用户输入非0值时, t1 线程循环能够立即结束.

volatile 不保证原子性

volatile 和 synchronized 有着本质的区别. synchronized 能够保证原子性, volatile 保证的是内存可见性.

代码示例
这个是最初的演示线程安全的代码

  • 给 increase 方法去掉 synchronized
  • 给 count 加上 volatile 关键字.
static class Counter {
    volatile public int count = 0;
    void increase() {
        count++;
   }
}
public static void main(String[] args) throws InterruptedException {
    final Counter counter = new Counter();
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 50000; i++) {
            counter.increase();
       }
   });
    Thread t2 = new Thread(() -> {
        for (int i = 0; i < 50000; i++) {
            counter.increase();
       }
   });
    t1.start();
    t2.start();
    t1.join();
    t2.join();
    System.out.println(counter.count);
}

此时可以看到, 最终 count 的值仍然无法保证是 100000.

synchronized 也能保证内存可见性

synchronized 既能保证原子性, 也能保证内存可见性
对上面的代码进行调整:

  • 去掉 flag 的 volatile
  • 给 t1 的循环内部加上 synchronized, 并借助 counter 对象加锁.
static class Counter {
    public int flag = 0; 
}
public static void main(String[] args) {
    Counter counter = new Counter();
    Thread t1 = new Thread(() -> {
        while (true) {
            synchronized (counter) {
                if (counter.flag != 0) {
                    break;
               }
           }
            // do nothing
       }
        System.out.println("循环结束!");
   });
    Thread t2 = new Thread(() -> {
        Scanner scanner = new Scanner(System.in);
        System.out.println("输入一个整数:");
        counter.flag = scanner.nextInt();
   });
    t1.start();
    t2.start();
}

6.1 ★★★ 面试中的JMM

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/412498.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构——排序(4)

作者&#xff1a;几冬雪来 时间&#xff1a;2023年4月12日 内容&#xff1a;数据结构排序内容讲解 目录 前言&#xff1a; 1.快速排序中的递归&#xff1a; 2.小区间优化&#xff1a; 3.递归改非递归&#xff1a; 4.归并排序&#xff1a; 5.归并排序的非递归形式&…

Revit中如何绘制倾斜的屋顶及一键成板?

Revit中如何绘制倾斜的屋顶&#xff1f;如下图所示&#xff0c;像这种坡屋顶有两种方法进行绘制。 第一种&#xff1a;定义坡度。 1、点击建筑选项卡中的屋顶按钮。选择使用矩形工具。 2、在选项栏中&#xff0c;偏离值修改为500&#xff0c;把屋顶迹线绘制出来。 3、取消这三…

软件测试今天你被内卷了吗?

认识一个人&#xff0c;大专学历非计算机专业的&#xff0c;是前几年环境好的时候入的行&#xff0c;那时候软件测试的要求真的很低&#xff0c;他那时好像是报了个班&#xff0c;然后入门的&#xff0c;但学的都是些基础&#xff0c;当时的他想的也简单&#xff0c;反正也能拿…

【面试】限流算法有哪些?

文章目录前言1.固定窗口限流算法1.2 固定窗口限流的伪代码实现1.2 固定窗口算法的优缺点2.漏桶算法3.令牌桶算法4. 滑动窗口限流算法4.1 什么是滑动窗口限流算法4.2 滑动窗口限流算法的伪代码实现4.3 滑动窗口限流算法的优缺点漏桶算法 VS 令牌桶算法总结参考 & 鸣谢前言 …

docker项目实施

鲲鹏916架构openEuler-arm64成功安装docker并跑通tomcat容器_闭关苦炼内功的技术博客_51CTO博客鲲鹏916架构openEuler-arm64成功安装docker并跑通tomcat容器&#xff0c;本文是基于之前这篇文章鲲鹏920架构arm64版本centos7安装docker下面开始先来看下系统版本卸载旧版本旧版本…

刘二大人《Pytorch深度学习实践》第八讲加载数据集

文章目录Epoch、Batch-Size、IterationsDataset、DataLoader课上代码torchvision中数据集的加载Epoch、Batch-Size、Iterations 1、所有的训练集进行了一次前向和反向传播&#xff0c;叫做一个Epoch 2、在深度学习训练中&#xff0c;要给整个数据集分成多份&#xff0c;即mini-…

【密码学】ElGamal加密算法原理 以及 例题讲解

目录前言1. 原理2. 例题2.1 例题一2.2 例题二前言 具体的性质&#xff1a; 非对称加密算法应用于一些技术标准中&#xff0c;如数字签名标准&#xff08;DSS&#xff09;、S/MIME 电子邮件标准算法定义在任何循环群 G 上&#xff0c;安全性取决于 G 上的离散对数难题 1. 原理…

元宇宙地产暴跌,林俊杰亏麻了

文/章鱼哥出品/陀螺财经随着元宇宙的兴起&#xff0c;元宇宙地产曾一度被寄予厚望&#xff0c;成为各大投资者追捧的对象。然而&#xff0c;最近的一次元宇宙地产价值暴跌再次提醒我们&#xff0c;高收益背后可能伴随着高风险。根据元宇宙分析平台WeMeta的数据显示&#xff0c;…

400以内的蓝牙耳机哪款好?400以内蓝牙耳机排行榜

谈起TWS&#xff0c;无论是传统的音频厂商还是手机厂商&#xff0c;都是其不可或缺的重要产品线&#xff0c;现在很多许多蓝牙耳机都不是千篇一律得形状&#xff0c;市场也鲜有商家在外观上下功夫&#xff0c;下面分享几款400元以内&#xff0c;内外兼具的耳机品牌。 一、南卡…

Spring boot+Vue3博客平台:修改密码与找回密码的设计与实现

修改密码与找回密码功能的设计与实现涉及到前后端的配合。本文将详细介绍如何通过设计思路、技术实现和代码示例实现这两个功能。 一、修改密码功能 设计思路 在设计修改密码功能时&#xff0c;需要注意以下几点&#xff1a; 用户输入的当前密码需要正确新密码需要满足一定的…

查询优化器:选择最优的查询路径

当我们通过解析器理解了SQL语句要干什么之后&#xff0c;接着会找查询优化器&#xff08;Optimizer&#xff09;来选择一个最优的查询路径。 可能有同学这里就不太理解什么是最优的查询路径了&#xff0c;这个看起来确实很抽象&#xff0c;当然&#xff0c;这个查询优化器的工…

总结819

学习目标&#xff1a; 4月&#xff08;复习完高数18讲内容&#xff0c;背诵21篇短文&#xff0c;熟词僻义300词基础词&#xff09; 第二周&#xff1a; 学习内容&#xff1a; 暴力英语&#xff1a;早上背诵《think different》记150词&#xff0c;默写了两篇文章&#xff0c…

BUUCTF-warmup_csaw_2016

1.checksec/file 64位的linux文件 2.ida 找到主函数 发现致命函数 get() 因为get可以无限输入 看看有没有什么函数我们可以返回的 双击进入sub_40060d 直接发现这个函数是取flag的 所以我们开始看这个函数的地址 所以函数地址是 0x40060d 我们看看get什么时候开始的 发现g…

Stable Diffusion复现——基于 Amazon SageMaker 搭建文本生成图像模型

众所周知&#xff0c;Stable Diffusion扩散模型的训练和推理非常消耗显卡资源&#xff0c;我之前也是因为资源原因一直没有复现成功。而最近我在网上搜索发现&#xff0c;亚马逊云科技最近推出了一个【云上探索实验室】刚好有复现Stable Diffusion的活动&#xff0c;其使用亚马…

超详细从入门到精通,pytest自动化测试框架实战-fixture高级进阶(十)

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 1、fixture的autous…

jQuery+AJAX技术(简单的用户注册功能)

目录1、jQuery是什么&#xff1f;2、AJAX是什么&#xff1f;3、jQuery与AJAX的关系&#xff1f;使用jQuery实现AJAX示例&#xff1a;4、jQueryAJAX技术实现用户注册验证功能。1、jQuery是什么&#xff1f; jQuery 是一个快速&#xff0c;小型且功能丰富的JavaScript库。它使 诸…

gradle编译项目报错Execution failed for task ‘:bootJar‘,‘:mainClass‘,‘:compileJava‘.

目录1.问题2.问题查找3.更多1.问题 idea导入Gradle管理的SpeingBoot多模块项目&#xff0c;依赖下载不下来&#xff0c;执行编译报错 报错信息&#xff1a; 2.问题查找 首先怀疑是不是idea的版本与gradle版本冲突&#xff0c;我用的是idea2022.3.3&#xff0c;gradle是7.5.…

做一个内心强大的人

想想类似如下这种心灵鸡汤&#xff0c;本不太愿意在这个平台发布&#xff0c;但是偶尔喝点又何尝不可&#xff01; 语录摘抄/分享&#xff1a; 1、你开始炫耀自己&#xff0c;往往都是灾难的开始&#xff0c;就像老子在《道德经》里写到: 光而不耀&#xff0c;静水流深。 2、…

汽车电子相关术语介绍

一、相关术语介绍 1、汽车OTA 全称“Over-The-Air technology ”&#xff0c;即空中下载技术&#xff0c;通过移动通信的接口实现对软件进行远程管理&#xff0c;传统的做法到4S店通过整车OBD对相应的ECU进行软件升级。OTA技术最早2000年出现在日本&#xff0c;目前通过OTA方式…

HashMap源码解析超详细

HashMap源码详解1、概述2、源码解析1.HashMap底层存储结构问题一: 为什么直接就用数组呢&#xff1f;问题二&#xff1a;什么是红黑树呢&#xff1f;问题三&#xff1a;为什么不一下子把整个链表变为红黑树呢&#xff1f;2.HashMap的重要成员变量3.构造方法解析4.Put方法解析取…