铁路轨道不平顺数据分析与预测

news2025/6/9 19:19:16

铁路轨道不平顺数据分析与预测

1.引言

铁路轨道作为铁行车的基础设施,是铁路线路的重要组成部分。随着经济和交通运输业的发展,我国的铁路运输正朝着高速和重载方向迅速发展,与此同时,轨道结构承受来自列车荷载、运行速度的冲击和列车的振动等各方面的作用力不断增大,不仅加速了铁路轨道设备的损坏,由此产生的轨道不平顺问题会严重影响车辆行,乘客的舒适度以及设备的使用寿命等,存在非常严重的安全隐患。
在铁路运营过程中,轨道在列车不稳定荷载的反复作用下容易发生一定的几何形变,这其中有些是垂直向和横向的动态弹性变形,有些则是永久变形,而这些现象都统称为轨道不平顺
在这里插入图片描述
轨道的不平顺会引起列车的振动和轮轨作用力不断变化,不仅影响列车的舒适度,降低轨道与列车部件的使用寿命,甚至可能导致列车脱轨,严重威胁行车安全。其中,轨道的高低不平顺容易激起列车的垂向振动,导致轮轨间作用力大幅减小,甚至造成轮轨分离,使得列车存在悬浮和脱轨的危险。

本项目需要对高速铁路实际运营过程中测量的动检数据进行分析,得到滑动轨道质量指数TQI。进行高低不平顺劣化预测,根据预测结果对模型的预测效果进行评价。
项目目标:
1.分析所给轨道动检数据的滑动轨道质量指数,并结合相应规范给出轨道质量验收报告。
2.根据计算得到的高低不平顺标准差,构建时间序列预测分析模型,预测未来一年的高低不平顺劣化趋势,并采用均方误差和均方根误差对预测模型的结果进行评价。

2.数据预处理

使用python中的pandas库函数读入数据,并对数据进行初步的处理。
对于2016年1月至2021年12月共计12个月的月度数据读取至dataframe结构,如图2.1所示,一共有:里程(m),轨距(mm),超高(mm),左轨向(mm),右轨向(mm),左高低(mm),右高低(mm),三角坑(mm),水平(mm)共计9个属性。
在这里插入图片描述
画出数据分布的箱线图,使用箱线图判断是否存在在可信范围之外的异常数据。箱形图(Box-plot)又称箱线图,是一种表征一组数据分散情况的统计图,主要用于体现原始数据分布的特征,还可以进行多组数据分布特征的比较。箱形图包括最小值(min),下四分位数(Q1),中位数(Xm),上四分位数(Q3)和最大值(max);如图 3-2 所示,绿色矩形框的上下两端边的位置分别对应数据的上、下四分位数(Q3、Q1);矩形框内部的蓝色线段为中位线对应中位数(Xm)。上四分位数与下四分位数之间的距离是数据分布的一种简单度量,它给出被数据的中间一半所覆盖的范围。该距离称为四分位数极差(IQR)。

因此,最大值(max)定义为 Q3+1.5IQR;最小值(min)定义为 Q3-1.5IQR。基于此,视大于最大值(max)或小于最小值(min)的数据为离群点。
在这里插入图片描述

图2.2 数据箱线图

由图2.2可以观察到,数据的轨距,水平,左高低等属性存在较多的离群点即异常数据,这里采用最大最小值异常值替换的方式进行异常值处理。处理之后的箱线图如图2.3所示,所有数据都在可信范围之内。

3.滑动TQI的计算

轨道质量指数是评价单元区段整体不平顺的重要指标。目前,我国釆用的计算方法,主要是通过计算200米单元区段内轨距,左右高低,左右轨向,水平超高以及三角坑等共7个单项的不平顺幅值标准差之和来获得的,能综合反映该区段的整体不平顺状态以及轨道恶化程度。通过对所有轨道单元区段的TQI数值排序可以确定需要重点维修的区段,所以TQI是我国铁路工务部门指导线路维修最重要的指标。

根据工务部门多年的管理经验表明,对轨道区段TQI进行长期的监测和分析,有利于现场维修人员及时掌握轨道状态的改善或者恶化情况以及未来的发展趋势,从而更有效率的编制维修计划。

TQI 以 200 m 长度轨道区段作为计量单元,对单元区段内的轨道几何进行统计,用标准差来表示单 项轨道几何不平顺状态,而 TQI 则为一个单元区段内左高低、右高低、左轨向、右轨向、轨距、水平和 三角坑等七个单项几何不平顺标准差之和,计算方法如下列公式:
在这里插入图片描述
由上述TQI的定义,可以得到滑动TQI的计算方法。以1为滑动TQI的移动步长,以800为滑动TQI的移动窗长。以2016年1月的测量数据为例,可以得到滑动TQI结果图见图3.1:
在这里插入图片描述

画出2020年1月的TQI沿里程变化图与2016年1月滑动TQI沿里程变化图作比较:
在这里插入图片描述
由图3.2可以得出,从2016年至2020年,轨道的区段的状态发生了明显恶化,且在部分区段恶化非常显著。

4.高低不平顺劣化预测

在列车运行的过程中,因轨道不平顺而产生的列车振动加速度对货车以及客车的运行均有影响,主要的影响货车的安全性,客车的舒适性等。由于近年来铁路大面积提高运行效率,朝着高速和重载方向的发展,对轨道结构提出了更高的要求,除了应该具备必要的强度外,还要保持良好的几何形位。为此国内外铁路部门及研究机构都加强了对轨道几何变形的检测。

轨道几何不平顺的变化特征是轨道上大量样本检测点的几何不平顺随时间及车俩载荷重复作用下,表现出共有或者相似的特征,反映了轨道几何不平顺的一般规律。本章采用SARIMA模型进行轨道高低不平顺劣化预测。

我们以K44+074段的左高低为例进行研究,首先画出K44+074段的左高低标准差在2016年1月至2020年12月的变化趋势如图所示:
在这里插入图片描述
我们选取2016年1月至2019年12月的数据作为训练集,2020年全年的数据作为验证集,使用SARIMA模型进行建立预测模型。
得到ACF与PACF图像如图所示:
在这里插入图片描述
由图4.1可知,最佳的SARIMA模型为SARIMA (0, 1, 1)。
使用SARIMA(0, 1, 1)模型对2020年轨道高低不平顺标准差进行预测可以得到结果如所示:

在这里插入图片描述

参考代码:

135.	TQI=[]  
136.	for i in range(0,len(data1)-800):  
137.	    temp_data=data.loc[data.index[i:i+800]]  
138.	    a1=np.array(temp_data['三角坑(mm)'])  
139.	    a2=np.array(temp_data['右轨向(mm)'])  
140.	    a3=np.array(temp_data['右高低(mm)'])  
141.	    a4=np.array(temp_data['左轨向(mm)'])  
142.	    a5=np.array(temp_data['左高低(mm)'])  
143.	    a6=np.array(temp_data['轨距(mm)'])  
144.	    a7=np.array(temp_data['水平(mm)'])  
145.	    re=a1.std()+a2.std()+a3.std()+a4.std()+a5.std()+a6.std()+a7.std()  
146.	    TQI.append(re)  
147.	import matplotlib.pyplot as plt  
148.	import numpy as np  
149.	import matplotlib  
150.	matplotlib.rc("font",family='KaiTi')  
151.	  
152.	x=np.arange(0,4800,0.25)  
153.	  
154.	plt.title("2016年1月滑动TQI沿里程变化图")  
155.	plt.xlabel("里程(m)")  
156.	plt.ylabel("TQI")  
157.	  
158.	plt.plot(x,TQI)  
159.	  
160.	# 2020年1月滑动TQI沿里程变化的序列数据  
161.	TQI_2=[]  
162.	for i in range(len(data1)*48,len(data1)*49-800):  
163.	    temp_data=data.loc[data.index[i:i+800]]  
164.	    # python中对于矩阵的计算尽量不要在DataFrame中,效率非常低。应该使用numpy  
165.	    a1=np.array(temp_data['三角坑(mm)'])  
166.	    a2=np.array(temp_data['右轨向(mm)'])  
167.	    a3=np.array(temp_data['右高低(mm)'])  
168.	    a4=np.array(temp_data['左轨向(mm)'])  
169.	    a5=np.array(temp_data['左高低(mm)'])  
170.	    a6=np.array(temp_data['轨距(mm)'])  
171.	    a7=np.array(temp_data['水平(mm)'])  
172.	    re=a1.std()+a2.std()+a3.std()+a4.std()+a5.std()+a6.std()+a7.std()  
173.	    TQI_2.append(re)  
174.	  
175.	x=np.arange(0,4800,0.25)  
176.	  
177.	  
178.	  
179.	plt.plot(x,TQI,label='2016年1月')  
180.	plt.plot(x,TQI_2,label='2020年1月')  
181.	  
182.	plt.title("滑动TQI沿里程变化图")  
183.	plt.xlabel("里程(m)")  
184.	plt.ylabel("TQI")  
185.	plt.legend()  
186.	  
187.	input_data=[]  
188.	for i in range(72):  
189.	    temp_data=data.loc[data.index[len(data1)*i+16000:len(data1)*i+20000]]  
190.	    temp=np.array(temp_data['左高低(mm)'])  
191.	    input_data.append(temp.std())  
192.	  
193.	from matplotlib.pyplot import MultipleLocator  
194.	#从pyplot导入MultipleLocator类,这个类用于设置刻度间隔  
195.	  
196.	fig = plt.figure(figsize=(15,5))    # 设置画布大小  
197.	plt.ylim(0.1,1)  # y轴显示范围  
198.	plt.plot(input_data[0:60],'o-')  
199.	  
200.	from statsmodels.graphics.tsaplots import plot_acf, plot_pacf  # 画图定阶  
201.	  
202.	def draw_acf(data):  
203.	    # 利用ACF判断模型阶数  
204.	    plot_acf(data)  
205.	    plt.title("序列自相关图(ACF)")  
206.	    plt.show()  
207.	  
208.	def draw_pacf(data):  
209.	    # 利用PACF判断模型阶数  
210.	    plot_pacf(data)  
211.	    plt.title("序列偏自相关图(PACF)")  
212.	    plt.show()  
213.	      
214.	def draw_acf_pacf(data):  
215.	    f = plt.figure(facecolor='white')  
216.	    # 构建第一个图  
217.	    ax1 = f.add_subplot(211)  
218.	    # 把x轴的刻度间隔设置为1,并存在变量里  
219.	    x_major_locator = MultipleLocator(1)  
220.	    plot_acf(data,  ax=ax1)  
221.	    # 构建第二个图  
222.	    ax2 = f.add_subplot(212)  
223.	    plot_pacf(data, ax=ax2)  
224.	    plt.subplots_adjust(hspace=0.5)  
225.	    # 把x轴的主刻度设置为1的倍数  
226.	    ax1.xaxis.set_major_locator(x_major_locator)  
227.	    ax2.xaxis.set_major_locator(x_major_locator)  
228.	    plt.show()  
229.	  
230.	draw_acf_pacf(np.array(train_data))  

全部代码见:https://download.csdn.net/download/weixin_44026026/87657283

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/412456.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Elasticsearch 学习+SpringBoot实战教程(三)

需要学习基础的可参照这两文章 Elasticsearch 学习SpringBoot实战教程(一) Elasticsearch 学习SpringBoot实战教程(一)_桂亭亭的博客-CSDN博客 Elasticsearch 学习SpringBoot实战教程(二) Elasticsearch …

QT笔记——QtXlsx操作Execl

使用第三方库QtXlsx来操作execl 环境:vs2019 qt5.12.2 第一步: 我们需要找到对应的下载QtXlsx的第三方库的下载路径: QtXlsx下载 第二步: 编译我们的QtXlsx,看了网上有很多中的例子,我这边暂时只举例 vsqt…

一个评测模型+10个问题,摸清盘古、通义千问、文心一言、ChatGPT的“家底”!...

‍数据智能产业创新服务媒体——聚焦数智 改变商业毫无疑问,全球已经在进行大模型的军备竞赛了,“有头有脸”的科技巨头都不会缺席。昨天阿里巴巴内测了通义千问,今天华为公布了盘古大模型的最新进展。不久前百度公布了文心一言、360也公布了…

技术经济学(刘秋华)(第三版)——第三章 经济型评价的基本要素

第三章 经济型评价的基本要素 技术经济分析的基本原理包括技术经济比较原理和资金报酬原理。技术经济比较原理又包括满足需要的可比原理、总消耗费用的可比原理、价格指标的可比原理和时间因素的可比原理四个方面。这些原理的作用在于确保技术方案的经济性和可行性。 其中&am…

ChatGPT批量翻译-ChatGPT批量生成多国语言

ChatGPT翻译的准吗 ChatGPT是一种基于Transformer架构的自然语言处理技术,其翻译准确性取决于所训练的模型和数据集的质量。在特定的语料库和训练数据下,ChatGPT可以实现一定程度的准确翻译。但是,与人工翻译相比,ChatGPT的翻译质…

【Deep Learning】CNN卷积神经网络—卷积

卷积 文章目录卷积Quickstart一,计算机视觉(Computer vision)二,边缘检测(Edge detection example)-2.1 卷积操作过程:三,边缘检测的更多知识(More edge detection&#…

4月想跳槽的同学,没有更好的选择,可以去美团

在美团干了半年,说一下自己的感受,美团是一家福利中等,工资待遇中上,高层管理团队强大,加班强度一般,技术不错,办公环境一般,工作氛围中上,部门差距之间工作体验差距巨大…

SpringBoot-数据访问-整合MyBatis-配置版

引入依赖 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.1.4</version> </dependency> ConditionalOnSingleCandidate(DataSource.class) 单一数…

视图的使用

为什么引入视图&#xff08;Views&#xff09; 如果您读过其他类似的书&#xff0c;可能会看到这些书在介绍视图时列举了许多引入视图的原因。其中认为最重要的原因是维护数据的独立性。那么什么是数据的独立性呢&#xff1f; 早期信息系统的设计与开发多采用模块驱动方式&am…

NumPy 秘籍中文第二版:七、性能分析和调试

原文&#xff1a;NumPy Cookbook - Second Edition 协议&#xff1a;CC BY-NC-SA 4.0 译者&#xff1a;飞龙 在本章中&#xff0c;我们将介绍以下秘籍&#xff1a; 使用timeit进行性能分析使用 IPython 进行分析安装line_profiler使用line_profiler分析代码具有cProfile扩展名…

【分布式事务AT模式 本地部署Seata服务】分布式事务框架Seata详细讲解

前言 这篇文章我会从0到1详细搭建分布式事务框架seata的使用&#xff0c;那么我们首先要先了解一下什么是分布式事务&#xff1f; 本篇文章是本地启动seata服务并且注册到nacos中&#xff0c;在SpringCloud中整合seata框架请转移下方连接 点我跳转SpringCloud整合seata教程&…

【网络原理】TCP/IP协议(续)

目录 &#x1f525;网络层重点协议&#xff08;IP 协议&#xff09; 一、地址管理 1.如何解决上述地址不够用问题&#xff1f; 2.NAT 机制 2.1 NAPT 2.2 在 NAT 背景下如何通信&#xff1f; 3.IPv6 4.IP地址 4.1 ABCDE类 4.2 子网掩码 4.3 特殊的 IP 地址 二、路由…

传统汽车保险丝盒与智能保险丝盒Efuse的应用

一、传统汽车保险丝盒 1、概述 电气盒是用于提供车辆电源分配和回路保护的电气枢纽。电气盒能简化线束的安装和整车的装配过程&#xff0c;改善系统的整体质量水平&#xff0c;降低成本和减少散乱。 一般传统电气盒分为PFB&#xff08;预保险丝盒&#xff09;&#xff0c;UE…

公网使用SSH远程登录macOS服务器【内网穿透】

文章目录前言1. macOS打开远程登录2. 局域网内测试ssh远程3. 公网ssh远程连接macOS3.1 macOS安装配置cpolar3.2 获取ssh隧道公网地址3.3 测试公网ssh远程连接macOS4. 配置公网固定TCP地址4.1 保留一个固定TCP端口地址4.2 配置固定TCP端口地址5. 使用固定TCP端口地址ssh远程前言…

Nacos共享配置

本文介绍一下Nacos作为配置中心时&#xff0c;如何读取共享配置 我的环境 Windows10JDK8SpringCloud&#xff1a;Finchley.RELEASESpringBoot&#xff1a;2.0.4.RELEASEspring-cloud-alibaba-dependencies&#xff1a;0.2.2.RELEASENacos-server&#xff1a;1.0.1 本文的项目…

去互联网大厂卷还是去上升期创业型公司offer二选一?你怎么抉择?

上升期的创业型公司 vs 大厂 如何抉择&#xff1f; 最近总有一些粉丝特别“凡尔赛”的发几个 offer 问我选择哪个&#xff1f;其中比较典型的一个问题就是&#xff1a; “一个是处于上升期的创业型公司 &#xff0c;一个行业大厂&#xff0c;薪资待遇差不多&#xff0c;到底该…

elastissearch——排序结果处理

排序 elasticsearch支持对搜索结果排序&#xff0c;默认是根据相关度算分&#xff08;_score&#xff09;来排序。可以排序字段类型有&#xff1a;keyword类型、数值类型、地理坐标类型、日期类型等。 GET /hotel/_search { "query": { "match_all"…

DC插装式流量阀压力阀

Cartridge Valves 电磁阀 止回阀 运动控制阀 流量控制阀 溢流阀 压力控制阀 顺序阀 梭阀 方向阀 配件 Zero Profile Valves 止回阀 运动控制阀 流量控制阀 溢流阀 梭阀 In-Line Valves 止回阀和梭阀 方向阀 配件 微型系列 AB20S APIDC-30S C10B C10S C10S…

opengl 坐标系

概述 为了将坐标从一个坐标系统转换成另一个坐标&#xff0c;我们需要经历几个变换&#xff08;1&#xff1a;模型 2&#xff1a;观察 3&#xff1a;投影&#xff09;我们的顶点坐标起始于局部坐标&#xff0c;然后变成世界坐标&#xff0c;观察坐标&#xff0c;剪裁坐标 最后以…

BUUCTF-MD5强弱比较-MD5()的万能密码-tornado框架注入-中文电码

第六周 第三次 目录 学习到的知识 1.MD5强弱比较可以都可以使用数组绕过 2.基于MD5()的万能密码 ffifdyop WEB [BJDCTF2020]Easy MD5 ​编辑[护网杯 2018]easy_tornado Crypto 信息化时代的步伐 凯撒&#xff1f;替换&#xff1f;呵呵! Misc 神秘龙卷风 学习到的…