统计学 一元线性回归

news2025/7/23 6:46:14

统计学 一元线性回归

回归(Regression):假定因变量与自变量之间有某种关系,并把这种关系用适当的数学模型表达出来,利用该模型根据给定的自变量来预测因变量

  • 线性回归:因变量和自变量之间是线性关系

  • 非线性回归:因变量和自变量之间是非线性关系

变量间的关系

变量间的关系:往往分为函数关系相关关系;函数关系是确定的关系(例如 y = x 2 y=x^2 y=x2 y y y x x x 的关系),而相关关系是不确定的关系(例如家庭储蓄额和家庭收入)

相关系数:度量两个变量之间线性关系强度的统计量,样本相关系数记为 r r r (也称为 Pearson 相关系数),总体相关系数记为 ρ \rho ρ
r = ∑ ( X − X ˉ ) ( Y − Y ˉ ) ∑ ( X − X ˉ ) 2 ⋅ ∑ ( Y − Y ˉ ) 2 r=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^2\cdot\sum(Y-\bar{Y})^2}} r=(XXˉ)2(YYˉ)2 (XXˉ)(YYˉ)

  • r ∈ [ − 1 ,   1 ] r\in[-1,\,1] r[1,1] ,越接近 1 1 1 代表两个变量之间正线性相关关系越强,越接近 − 1 -1 1 代表两个变量之间负线性相关关系越强,等于 0 0 0 表示两个变量之间不存在线性关系;
  • r r r 具有对称性,即 r X Y = r Y X r_{XY}=r_{YX} rXY=rYX ;很显然,若 X X X Y Y Y 之间是线性关系,那么 Y Y Y X X X 之间也是线性关系;
  • r r r 不具有量纲,对 X X X Y Y Y 的缩放不敏感,其数值大小与 X X X Y Y Y 的尺度以及原点无关;
  • r r r 不能用于描述非线性关系,可以结合散点图得出结论;
  • r r r 是两个变量之间线性关系的度量,但不一定意味着 X X X Y Y Y 有因果关系。

相关系数的检验:采用 R.A.Fisher 提出的 t 分布检验,既可用于小样本,也可用于大样本:

① 提出假设: H 0 H_0 H0 ρ = 0 \rho=0 ρ=0 H 1 H_1 H1 ρ = 1 \rho=1 ρ=1

② 计算样本相关系数 r r r 以及检验统计量 t = r n − 2 1 − r 2 ∼ t ( n − 2 ) t=\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}\sim t(n-2) t=1r2 rn2 t(n2)

③ 算出 P P P 值,进行决策

一元线性回归模型的估计

一元回归:当回归分析只涉及一个自变量时称为一元回归

回归模型:描述因变量 y y y 如何依赖于自变量 x x x 和误差项 ε \varepsilon ε 的方程;一元线性回归模型可表示为:
y = β 0 + β 1 x + ε y=\beta_0+\beta_1x+\varepsilon y=β0+β1x+ε
模型参数为 β 0 \beta_0 β0 β 1 \beta_1 β1 ;随机变量 ε \varepsilon ε 被称为误差项,对其需要作出以下假定:

  • 正态性: ε \varepsilon ε 服从期望为 0 的正态分布;
  • 方差齐性:对于所有的 X X X 值, ε \varepsilon ε 的方差值 σ 2 \sigma^2 σ2 都相同;
  • 独立性:两个不同 X X X 值对应的 ε \varepsilon ε 不相关

估计的回归方程:总体的 β 1 \beta_1 β1 β 0 \beta_0 β0 是未知的,需要用样本数据去估计,为: y ^ = β 0 ^ + β 1 ^ x \hat{y}=\hat{\beta_0}+\hat{\beta_1}x y^=β0^+β1^x β 1 ^ \hat{\beta_1} β1^ 称为回归系数)

最小二乘法:使离差 ∣ y ^ − y ∣ |\hat{y}-y| y^y 的平方和最小的估计方法,即:
Q = ∑ ( y i − y ^ i ) 2 = ∑ ( y i − β ^ 0 − β 1 ^ x i ) 2 = m i n Q=\sum(y_i-\hat{y}_i)^2=\sum(y_i-\hat{\beta}_0-\hat{\beta_1}x_i)^2=min Q=(yiy^i)2=(yiβ^0β1^xi)2=min
求导得到:
{ ∂ Q ∂ β 0 ∣ β 0 = β ^ 0 = − 2 ∑ ( y i − β ^ 0 − β ^ 1 x i ) = 0 ∂ Q ∂ β 1 ∣ β 1 = β ^ 1 = − 2 ∑ x i ( y i − β ^ 0 − β ^ 1 x i ) = 0 \left\{ \begin{array}{l} \frac{\partial Q}{\partial \beta_0}\lvert_{\beta_0=\hat{\beta}_0}=-2\sum(y_i-\hat{\beta}_0-\hat{\beta}_1x_i)=0 \\ \frac{\partial Q}{\partial \beta_1}\lvert_{\beta_1=\hat{\beta}_1}=-2\sum x_i(y_i-\hat{\beta}_0-\hat{\beta}_1x_i)=0 \end{array} \right. {β0Qβ0=β^0=2(yiβ^0β^1xi)=0β1Qβ1=β^1=2xi(yiβ^0β^1xi)=0
解得:
{ β ^ 1 = ∑ ( x − x ˉ ) ( y − y ˉ ) ∑ ( x − x ˉ ) 2 β 0 ^ = y ˉ − β ^ 1 x ˉ \left\{ \begin{array}{l} \hat{\beta}_1=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^2} \\ \hat{\beta_0}=\bar{y}-\hat\beta_1\bar{x} \end{array} \right. {β^1=(xxˉ)2(xxˉ)(yyˉ)β0^=yˉβ^1xˉ
(最小二乘法得到的回归直线通过样本平均点 ( x ˉ ,   y ˉ ) (\bar{x},\,\bar{y}) (xˉ,yˉ)

请添加图片描述

一元线性回归模型的判优

拟合优度:回归直线与各观测点的接近程度称为模型的的拟合优度,评价拟合优度的一个重要统计量就是决定系数

变差:因变量的取值的波动称为变差,变差的产生来自两个方面:

  • 由于自变量的取值不同造成的
  • 自变量以外的随机因素的影响

总平方和 n n n 次观测值的总变差可以由这些变差的平方和来表示,称为总平方和(SST), S S T = ∑ ( y i − y ˉ ) 2 SST=\sum(y_i-\bar{y})^2 SST=(yiyˉ)2 ;总平方和可以分解为:
S S T = ∑ ( y i − y ^ i + y ^ i − y ˉ ) 2 = ∑ ( y i − y ^ i ) 2 + ∑ ( y ^ i − y ˉ ) 2 − 2 ∑ ( y i − y ^ i ) ( y ^ i − y ˉ ) SST=\sum(y_i-\hat{y}_i+\hat{y}_i-\bar{y})^2=\sum(y_i-\hat{y}_i)^2+\sum(\hat{y}_i-\bar{y})^2-2\sum(y_i-\hat{y}_i)(\hat{y}_i-\bar{y}) SST=(yiy^i+y^iyˉ)2=(yiy^i)2+(y^iyˉ)22(yiy^i)(y^iyˉ)
可以证明 2 ∑ ( y i − y ^ i ) ( y ^ i − y ˉ ) = 0 2\sum(y_i-\hat{y}_i)(\hat{y}_i-\bar{y})=0 2(yiy^i)(y^iyˉ)=0 ,所以总平方和实际上表现为两个部分:
{ S S T = ∑ ( y i − y ^ i ) 2 + ∑ ( y ^ i − y ˉ ) 2 S S R = ∑ ( y ^ i − y ˉ ) 2 S S E = ∑ ( y i − y ^ i ) 2 \left \{ \begin{array}{l} SST=\sum(y_i-\hat{y}_i)^2+\sum(\hat{y}_i-\bar{y})^2 \\ SSR=\sum(\hat{y}_i-\bar{y})^2 \\ SSE=\sum(y_i-\hat{y}_i)^2\\ \end{array} \right. SST=(yiy^i)2+(y^iyˉ)2SSR=(y^iyˉ)2SSE=(yiy^i)2

  • 回归平方和(SSR):反映了 y y y 的总变差中由于 x x x y y y 的线性关系引起的 y y y 的变化部分,是可以由回归直线来解释的 y i y_i yi 的变差部分
  • 残差平方和(SSE) :是实际观测点与回归值的离差平方和,表示除了 x x x y y y 的线性影响之外的其他随机因素对 y y y 的影响

请添加图片描述

决定系数:又称判定系数,记为 R 2 R^2 R2 模型拟合的好坏取决于回归平方和 SSR 占总平方和 SST 的比例,越大则直线拟合得越好:
R 2 = S S R S S T = ∑ ( y ^ i − y ˉ ) 2 ∑ ( y i − y ˉ ) 2 R^2=\frac{SSR}{SST}=\frac{\sum(\hat{y}_i-\bar{y})^2}{\sum(y_i-\bar{y})^2} R2=SSTSSR=(yiyˉ)2(y^iyˉ)2

在一元线性回归中,相关系数 r r r 是决定系数 R 2 R^2 R2 的平方根

估计标准误差:即残差的标准差 s e s_e se,是对误差项 ε \varepsilon ε 的标准差 σ \sigma σ 的估计,反映了实际观测值 y i y_i yi 与回归估计值 y ^ i \hat{y}_i y^i 之间的差异程度, s e s_e se 越小,则直线拟合得越好:
s e = S S E n − 2 = ∑ ( y i − y ^ i ) 2 n − 2 s_e=\sqrt{\frac{SSE}{n-2}}=\sqrt{\frac{\sum(y_i-\hat{y}_i)^2}{n-2}} se=n2SSE =n2(yiy^i)2

一元线性回归模型的显著性检验

线性关系检验

线性关系检验:也称为 F F F 检验,用于检验自变量 x x x 和因变量 y y y 之间的线性关系是否显著,它们的关系是否能用一个线性模型 y = β 0 + β 1 x + ε y=\beta_0+\beta_1x+\varepsilon y=β0+β1x+ε 来表示。

  • SSR 的自由度为自变量 k k k (这里一元线性回归所以 k = 1 k=1 k=1 ),其除以自由度后得到回归均方(MSR)
  • SSE 的自由度为 n − k − 1 n-k-1 nk1 (这里一元线性回归所以 n − 2 n-2 n2),其除以自由度后得到残差均方(MSE)

① 提出检验假设:

  • H 0 H_0 H0 β 1 = 0 \beta_1=0 β1=0 (两个变量之间的线性关系不显著)
  • H 1 H_1 H1 β 1 ≠ 0 \beta_1\not=0 β1=0 (两个变量之间的线性关系显著)

② 计算检验自变量为
F = S S R / 1 S S E / ( n − 2 ) = M S R M S E ∼ F ( 1 ,   n − 2 ) F=\frac{SSR/1}{SSE/(n-2)}=\frac{MSR}{MSE}\sim F(1,\,n-2) F=SSE/(n2)SSR/1=MSEMSRF(1,n2)
③ 做出决策,确定显著性水平 α \alpha α ,根据自由度 d f 1 = 1 df_1=1 df1=1 d f 2 = n − 2 df_2=n-2 df2=n2 得到 P P P 值,与 α \alpha α 进行比较

回归系数的检验和推断

回归系数检验:也称为 t 检验,用于检验自变量对因变量的影响是否显著;在一元线性回归模型中,回归系数检验和线性关系检验等价,而在多元线性回归中这两种检验不再等价。其检验假设为:

  • H 0 H_0 H0 β 1 = 0 \beta_1=0 β1=0 (自变量对因变量的影响不显著)
  • H 1 H_1 H1 β 1 ≠ 0 \beta_1\not=0 β1=0 (自变量对因变量的影响显著)

β 1 ^ \hat{\beta_1} β1^ β 0 ^ \hat{\beta_0} β0^ 也是随机变量,它们有自己的抽样分布,统计证明, β 1 ^ \hat{\beta_1} β1^ 服从正态分布,期望 E ( β 1 ^ ) = β 1 E(\hat{\beta_1})=\beta_1 E(β1^)=β1 ,标准差的估计量为:( s e s_e se 为估计标准误差)
s β 1 ^ = s e ∑ x i 2 − 1 n ( ∑ x i ) 2 s_{\hat{\beta_1}}=\frac{s_e}{\sqrt{\sum x_i^2-\frac{1}{n}(\sum x_i)^2}} sβ1^=xi2n1(xi)2 se

(这个 s β 1 ^ s_{\hat{\beta_1}} sβ1^ 的分母太搞了,实际上等价于 s β ^ 1 = s e ∑ ( x i − x ˉ ) 2 s_{\hat{\beta}_1}=\frac{s_e}{\sqrt{\sum(x_i-\bar{x})^2}} sβ^1=(xixˉ)2 se

将回归系数标准化,就可以得到用于检验回归系数 β 1 ^ \hat{\beta_1} β1^ 的统计量 t t t ,在原假设成立的条件下, β 1 ^ − β 1 = β 1 ^ \hat{\beta_1}-\beta_1=\hat{\beta_1} β1^β1=β1^ ,因此检验统计量为:
t = β 1 ^ s β 1 ^ ∼ t ( n − 2 ) t=\frac{\hat{\beta_1}}{s_{\hat{\beta_1}}}\sim t(n-2) t=sβ1^β1^t(n2)
除了对回归系数进行检验外,还可以得到置信区间,回归系数 β 1 \beta_1 β1 在置信水平为 1 − α 1-\alpha 1α 下的置信区间为:
( β 1 ^ ± t α / 2 ( n − 2 ) s e ∑ ( x i − x ˉ ) 2 ) \left( \hat{\beta_1}\pm t_{\alpha/2}(n-2)\frac{s_e}{\sqrt{\sum(x_i-\bar{x})^2}} \right) (β1^±tα/2(n2)(xixˉ)2 se)
还可以得到截距 β 0 \beta_0 β0 1 − α 1-\alpha 1α 置信区间为:
( β 0 ^ ± t α / 2 ( n − 2 ) s e 1 n + x ˉ ∑ ( x i − x ˉ ) 2 ) \left( \hat{\beta_0}\pm t_{\alpha/2}(n-2)s_e\sqrt{\frac{1}{n}+\frac{\bar{x}}{\sum(x_i-\bar{x})^2}} \right) (β0^±tα/2(n2)sen1+(xixˉ)2xˉ )

利用回归方程进行预测

回归分析的目的:根据所建立的回归方程,用给定的自变量来预测因变量。如果对于 x x x 的一个给定值 x 0 x_0 x0 ,求出 y y y 的一个预测值 y ^ 0 \hat{y}_0 y^0 ,就是点估计;若是求出 y 0 y_0 y0 的一个估计区间,就是个别值的区间估计;若是求出 y 0 ˉ \bar{y_0} y0ˉ 的一个估计区间,就是平均值的区间估计。

例如,我们收集数据研究许多家企业的广告费支出作为自变量对销售收入这个因变量造成的影响:

  • 求出广告费用为 200 万元时企业销售收入平均值的区间估计,就是平均值的区间估计;
  • 求出广告费用为 200 万元的那家企业销售收入的区间估计,就是个别值的区间估计

点估计

点估计很明显,就是直接将 x 0 x_0 x0 代入方程即可,接下来介绍平均值和个别值的预测区间。

平均值的置信区间

平均值的置信区间 :设给定因变量 x x x 的一个值 x 0 x_0 x0 E ( y 0 ) E(y_0) E(y0) 为给定 x 0 x_0 x0 时因变量 y y y 的期望值。当 x = x 0 x=x_0 x=x0 时, y ^ 0 = β 0 ^ + β 1 ^ x 0 \hat{y}_0=\hat{\beta_0}+\hat{\beta_1}x_0 y^0=β0^+β1^x0 就是 E ( y 0 ) E(y_0) E(y0) 的估计值。那么按照区间估计的公式,要知道 y 0 ^ \hat{y_0} y0^ 的标准差的估计量 s y 0 ^ s_{\hat{y_0}} sy0^
s y 0 ^ = s e 1 n + ( x 0 − x ˉ ) 2 ∑ ( x i − x ˉ ) 2 s_{\hat{y_0}}=s_e\sqrt{\frac{1}{n}+\frac{(x_0-\bar{x})^2}{\sum{(x_i-\bar{x})^2}}} sy0^=sen1+(xixˉ)2(x0xˉ)2
因此,对于给定的 x 0 x_0 x0,平均值 E ( y 0 ) E(y_0) E(y0) 1 − α 1-\alpha 1α 置信水平下的置信区间为:
( y 0 ^ ± t α / 2 ( n − 2 ) s e 1 n + ( x 0 − x ˉ ) 2 ∑ ( x i − x ˉ ) ) \left( \hat{y_0}\pm t_{\alpha/2}(n-2)s_e\sqrt{\frac{1}{n}+\frac{(x_0-\bar{x})^2}{\sum(x_i-\bar{x})}} \right) (y0^±tα/2(n2)sen1+(xixˉ)(x0xˉ)2 )
x 0 = x ˉ x_0=\bar{x} x0=xˉ 时, y ^ 0 \hat{y}_0 y^0 的标准差的估计量最小,此时有 s y ^ 0 = s e 1 n s_{\hat{y}_0}=s_e\sqrt{\frac{1}{n}} sy^0=sen1 ,也就是说当 x 0 = x ˉ x_0=\bar{x} x0=xˉ 时,估计是最准确的。 x 0 x_0 x0 偏离 x ˉ \bar{x} xˉ 越远,那么 y 0 y_0 y0 的平均值的置信区间就变得越宽,估计的效果也就越不好。

个别值的预测区间

个别值的预测区间:用 s i n d s_{ind} sind 表示估计 y y y 的一个个别值时 y 0 ^ \hat{y_0} y0^ 的标准差的估计量:
s i n d = s e 1 + 1 n + ( x 0 − x ˉ ) 2 ∑ ( x i − x ˉ ) 2 s_{ind}=s_e\sqrt{1+\frac{1}{n}+\frac{(x_0-\bar{x})^2}{\sum{(x_i-\bar{x})^2}}} sind=se1+n1+(xixˉ)2(x0xˉ)2
因此,对于给定的 x 0 x_0 x0 y y y 的一个个别值 y 0 y_0 y0 1 − α 1-\alpha 1α 置信水平下的预测区间为:
( y 0 ^ ± t α / 2 ( n − 2 ) s e 1 + 1 n + ( x 0 − x ˉ ) 2 ∑ ( x i − x ˉ ) ) \left( \hat{y_0}\pm t_{\alpha/2}(n-2)s_e\sqrt{1+\frac{1}{n}+\frac{(x_0-\bar{x})^2}{\sum(x_i-\bar{x})}} \right) (y0^±tα/2(n2)se1+n1+(xixˉ)(x0xˉ)2 )
相比于置信区间而言,预测区间范围更宽一些,因此估计 y y y 的平均值比预测 y y y 的一个个别值更准确一些。同样,当 x 0 = x ˉ x_0=\bar{x} x0=xˉ 时,两个区间也都是最准确的。

用残差检验模型的假定

残差 e = y i − y ^ i e=y_i-\hat{y}_i e=yiy^i ,表示用估计的回归方程去预测 y i y_i yi 而引起的误差

残差分析:跟方差分析一样,我们在做一元回归分析的时候也假定 y = β 0 + β 1 x + ε y=\beta_0+\beta_1x+\varepsilon y=β0+β1x+ε 中的误差项 ε \varepsilon ε 是期望为零、具有方差齐性且相互独立的正态分布随机变量,需要对这个假设能否成立进行分析。

残差图:检验误差项 ε \varepsilon ε 是否满足这些假设,可以通过对残差图的分析来完成。常用的残差图有关于 x x x 的残差图、标准化残差图等。

  • 关于 x x x 的残差图是用横坐标表示自变量 x i x_i xi 的值,纵轴表示对应的残差 e i e_i ei

检验方差齐性

如果满足方差齐性,则残差图中的所有点都应当落在同一水平带中(图 a)且没有固定的模式,否则称为异方差性(图 b)。如果出现图 c 的情况,那么应当考虑非线性回归:

请添加图片描述

检验正态性

标准化残差:也称 Pearson 残差或半 t 化残差,是残差除以其标准差后得到的结果:
z e i = e i s e = y i − y ^ i s e z_{e_i}=\frac{e_i}{s_e}=\frac{y_i-\hat{y}_i}{s_e} zei=seei=seyiy^i
关于正态性的检验可以用标准化残差分析来完成。如果 ε \varepsilon ε 服从正态分布,那么标准化残差的分布也应服从正态分布。例如,标准化后,应当有 95 % 95\% 95% 的残差都落在 [ − 2 , 2 ] [-2,2] [2,2] 之间:

请添加图片描述

也可以画直方图或者 P-P 图来检验:

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/394946.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

看板组件:Bryntum Task Board JS 5.3.0 Crack

一个超级灵活的看板组件,Bryntum Task Board 是一个灵活的看板 Web 组件,可帮助您可视化和管理您的工作。 功能丰富 任务板非常灵活,允许您完全自定义卡片、列和泳道的渲染和样式。借助丰富的 API,您甚至可以在运行时打开或关闭功…

MSE 诊断利器上线

作者:子葵 背景 在日常开发和生产环境中,可能会遇到由于网络或者其他因素导致客户端连接 MSE 集群出现异常,此时需要排查集群以及客户端状态,通常需要通过文档查询对应的异常解释来定位问题,排查问题的链路比较长&am…

JNI内通过参数形式从C/C++中传递string类型数据至Java层

目录 0 前言 1 string类型参数形式传值 2 测试和结果 0 前言 类似之前我写过的两篇文章:一篇介绍了在JNI中基础类型int的传值方式;一篇详细梳理了在JNI层中多维数组的多种传值方式。 JNI内两种方式从C/C中传递一维、二维、三维数组数据至Java层详细…

如何实现接口幂等性

1 什么是幂等 幂等操作的特点是一次或者任意多次执行所产生的影响均与一次执行的影响相同,不会因为多次的请求而产生不一样的结果。换句话说,就是我使用相同的请求参数,去请求同一个接口,不管请求多少次获取到的响应数据应该是一…

JUC并发编程——Park Unpark

一、Park & Unpark 1.1 基本使用 它们是 LockSupport 类中的方法 // 暂停当前线程 LockSupport.park(); // 恢复某个线程的运行 LockSupport.unpark(暂停线程对象)先 park 再 unpark import lombok.extern.slf4j.Slf4j; import java.util.concurrent.locks.LockSuppor…

Baumer工业相机堡盟相机如何使用PnPEventHandler实现相机掉线自动重连(C++新)

项目场景: Baumer工业相机堡盟相机传统开发包BGAPI SDK进行工业视觉软件整合时,常常需要将SDK中一些功能整合到图像处理软件中,方便项目的推进使用; 在项目的图像处理任务中,可能会因为一些硬件比如线缆网卡的原因导…

五点CRM系统核心功能是什么

很多企业已经把CRM客户管理系统纳入信息化建设首选,用于提升核心竞争力,改善企业市场、销售、服务、渠道和客户管理等几个方面,并进行创新或转型。CRM系统战略的五个关键要点是:挖掘潜在客户、评估和培育、跟进并成交、分析并提高…

传输层--UDP协议

目录 一.补充知识 1.1传输层​ 1.2端口号 1.3netstat 二.UDP 2.1UDP协议格式 2.2UDP如何将有效载荷上交给上层 2.3UDP如何将报头与有效载荷进行分离? 2.4理解报头 2.5.UDP协议特点 2.6UDP缓冲区 2.6基于UDP的应用层协议 一.补充知识 1.1传输层 之前介绍…

相恨见晚的office办公神器(不坑盒子/打工人Excel插件2023年最新版)

不坑盒子 这是一个非常好用的插件工具,专门应用在Word文档和wps,支持Office 2010以上的版本,操作也简单且实用。 不坑盒子下载及使用说明 一键排版功能 像是下面的自动排版功能,可以在配置里面先设定好需要的格式,…

站内SEO排名不上?或许是这些常见问题导致的

在当今数字化的时代,几乎所有的企业和个人都有自己的网站。 然而,拥有一个网站并不代表着它就一定能够被搜索引擎优先展示。 SEO(搜索引擎优化)是一门需要技巧和耐心的艺术。在实践SEO的过程中,站内SEO是一个重要的环…

Hive 运行环境搭建

文章目录Hive 运行环境搭建一、Hive 安装部署1、安装hive2、MySQL 安装3、Hive 元数据配置到 Mysql1) 拷贝驱动2) 配置Metastore 到 MySQL3) 再次启动Hive4) 使用元数据服务的方式访问Hive二、使用Dbaver连接HiveHive 运行环境搭建 HIve 下载地址:http://archive.a…

剑指-Offer-09-用两个栈实现队列

剑指-Offer-09-用两个栈实现队列 题目描述: 用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作…

Qt 事件循环

一、QT消息/事件循环机制   Qt作为一个可视化GUI界面操作系统,是基于事件驱动的,我们程序执行的顺序不再是线性的,而是由一个个应用程序内部或外部的事件进行驱动的,无事件时便阻塞。这个有点类似于while循环,函数体…

智能交通数据集Rope3D(仅限科研使用)

Rope3D Dataset 官网:https://thudair.baai.ac.cn/index !!!如想要使用Rope3D数据集进行2D检测,最后有我们处理完的数据集链接。 !!! 介绍: DAIR-V2X数据集是首个用于…

11 款全能的苹果设备激活锁移除工具

出于安全原因,每个 Apple 用户都可以设置一个 Apple ID和密码来保护他们的信息。但如果您忘记了 Apple ID 和密码,您将无法使用 iCloud 激活锁。如果发生这种情况,您应该怎么办?不用担心。iCloud 激活锁移除工具专为在 iOS 设备上…

【Arduino疑难杂症】:arduino IDE2.0.4安装ESP8266、ESP32库教程

& 项目场景: 2023年3月7日,在使用新版arduino编程ESP8266的时候,发现无法像老版本那样去添加库或添加zip库,这个纯个人原因,以免习惯了老版本的一些同学也会迷茫这个问题,于是这篇文章应运而生&…

汽车标定知识整理(三):CCP报文可选命令介绍

目录 一、可选命令 CRO命令报文的可选命令表: 二、可选命令帧格式介绍 1、GET_SEED——获取被请求资源的种子(0x12) 2、UNLOCK——解锁保护(0x13) 3、SET_S_STATUS——设置Session状态(0x0C&#xff0…

Webpack打包--优化项目

1. Webpack基本概念 目标: webpack本身是, node的一个第三方模块包, 用于打包代码 2.Webpack能做什么 把很多文件打包整合到一起, 缩小项目体积, 提高加载速度 3.Webpack的官方解释 从本质上来讲,webpack是一个现在的javaScript应用的静态模块化打包工具。&#xff…

leetcode 2187. Minimum Time to Complete Trips(完成行程的最短时间)

(Medium) time数组里面是每个bus完成一次路程需要的时间,假设时间单位是h, 比如time [1,2,3]就表示第1辆bus跑完路程需要1h,第2辆需要2h,第3辆需要3h. 那么把所有bus都考虑进来,总共要跑完totalTrips次路程,问至少需…

数据库之基本功:Where 中常用运算符

1. 运算符及优先级 ( )优先级最高 SQL> show user; USER is "SCOTT" SQL> select ename, job, sal, comm from emp where jobSALESMAN OR jobPRESIDENT and sal> 1500;ENAME JOB SAL COMM …