Text to image论文精读ALR-GAN:文本到图像合成的自适应布局优化

news2025/7/19 11:12:49

ALR-GAN是北京工业大学学者提出的一种自适应布局优化生成对抗网络,其可以在没有任何辅助信息的情况下自适应地优化合成图像的布局。
文章发表于2023年,IEEE Transactions on Multimedia(TMM)期刊(CCF B,JCR1区),是一篇值得一读的文章。

文章链接:https://ieeexplore.ieee.org/document/10023990

一、原文摘要

文章提出了一种新的文本到图像生成网络——自适应布局优化生成对抗网络(ALR-GAN),其能够在没有任何辅助信息的情况下自适应地优化合成图像的布局。ALR-GAN包括一个自适应布局优化(ALR)模块和一个布局视觉优化(LVR)丢失。ALR模块将合成图像的布局结构(指物体和背景的位置)与相应的真实图像对齐。在ALR模块中,我们提出了一种自适应布局优化(Adaptive Layout refine, ALR)损失来平衡难特征和易特征的匹配,以实现更高效的布局结构匹配。LVR损失在细化布局结构的基础上,进一步细化布局区域内的视觉表示。在两个广泛使用的数据集上的实验结果表明,ALR-GAN在文本到图像生成任务中具有竞争力。

二、为什么提出ALR-GAN?

文本到图像生成(T2I)旨在从文本描述中合成逼真的图像。为了实现这一具有挑战性的跨模态生成任务,研究者们主要通过:①促进高分辨率图像合成;②细化图像细节;③增强图像语义这些方面来进行改进。
它们往往专注于单一物体的合成
,如鸟、花或狗。对于复杂的图像合成任务,合成的对象很容易被放置在图像的各种不合理的位置上,即布局结构很容易混乱

在之前的一些工作中,一些方法使用辅助信息如:对象边框object bounding box, 对象形状object shape, 和场景图scene graph来辅助生成,但是①这种辅助信息的获取一般价格昂贵,不利于任务的推广应用;②这些方法通常忽略了布局区域内的视觉质量。

ALR-GAN的目标就是在没有辅助信息的情况下改进合成图像的布局。

ALR-GAN提出了一种自适应布局优化生成对抗网络来改善合成图像的布局,包括一个自适应布局优化(ALR)模块布局视觉优化(LVR)损失。ALR模块和提出的自适应布局细化(ALR)损失的作用是自适应地将合成图像的布局结构与其对应的真实图像的视觉表示对齐。

三、ALR-GAN模型

3.1、模型框架

在这里插入图片描述
上图显示了所提出的ALR- GAN的架构,可以看到其是一种类似StackGAN++、AttnGAN、MirrorGAN、DM-GAN的多阶段模型,由文本编码器、三个生成器和三个鉴别器组成,另外框架还包含几个新组件:初始特征转换模块(IFTM)、自适应布局优化(ALR)模块、布局视觉优化(LVR)损耗

ALR模块配备了所提出的自适应布局细化(LVR)损失以自适应地细化合成图像的布局结构,辅助其对应的真实图像。
LVR损失旨在增强布局区域内的纹理感知和风格信息。

主要流程:文本编码器将输入的文本描述(单个句子)转换为句子特征s0和单词特征W,IFTM将文本嵌入s和噪声z∼N(0,1)转换为图像特征H0,ALR模块在训练过程中对生成器合成图像的布局结构进行自适应细化(后两层次),三个鉴别器对三个阶段的生成器分别鉴别优化,帮助生成器更好的训练。

3.2、自适应布局优化(ALR)模块

在这里插入图片描述
可以看到ALR模块包括一个语义相似矩阵(semantic Similarity Matrix, SSM)和一个文本视觉矩阵(Text-vision Matrix ,TVM)

1️⃣、布局结构构建

SSM语义相似矩阵 θ \theta θ(semantic Similarity Matrix) SSM矩阵用于计算单词W和图像子区域 H i − 1 H_{i−1} Hi1之间的语义匹配,计算方法与AttnGAN大致相同: θ k , j = exp ⁡ ( S k , j ′ ) ∑ k = 1 T exp ⁡ ( S k , j ′ ) , S k , j ′ = ( h i − 1 k ) T w j \theta_{k, j}=\frac{\exp \left(S_{k, j}^{\prime}\right)}{\sum_{k=1}^{T} \exp \left(S_{k, j}^{\prime}\right)}, \quad S_{k,j}^{\prime}=\left(h_{i-1}^{k}\right)^{T} w_{j} θk,j=k=1Texp(Sk,j)exp(Sk,j),Sk,j=(hi1k)Twj,其中 θ k , j θ_{k,j} θk,j为第j个单词 w i w_i wi与第k个图像子区域 h i − 1 k h^k_{i−1} hi1k之间的语义相似度权值

由于生成器对文本语义的理解不正确或不充分,合成图像的布局结构往往是混乱的。因此,我们希望合成图像的 θ \theta θ与真实图像的 θ ∗ \theta* θ对齐
在这里插入图片描述

通俗来讲,要保证合成图像的 θ \theta θ与真实图像的 θ \theta θ对齐,即要使合成图像SSM语义相似矩阵与真实图像的SSM语义相似矩阵一致,作者引入了真实图像的重建,如图所示: I i ∗ I_i^* Ii为真实图像,首先设计一个Encoder(包含一系列卷积块)提取图像特征 H i ∗ H_i^* Hi,为了保证这个提取过程能够保证质量,作者将生成器设置为Decoder,并引入重构损失: L i R E C = ∥ I i ∗ − I i ∗ ∗ ∥ 1 \mathcal{L}_{i}^{R E C}=\left\|I_{i}^{*}-I_{i}^{**}\right\|_{1} LiREC=IiIi∗∗1

2️⃣、自适应布局优化(ALR)损失

θ \theta θ θ ∗ \theta^* θ中的一些元素很容易匹配,而有些则很难匹配。硬区域是导致布局优化过程中的主要问题。因此,在训练过程中,模型应该更加注意硬区域的匹配。作者提出了自适应布局优化(ALR)损失来解决这个问题。它的构造有四个步骤:

  1. 计算绝对残差张量:R =Abs.(Θ∗ − Θ)
  2. 将R中的元素分为硬元素和软元素。我们设定一个阈值γ,ri,j < γ易于匹配则为软元素,元素ri,j≥γ难以匹配则为硬元素。
  3. 设计了一种自适应的特征级权重自适应机制,以调整Θ和Θ *中软和硬匹配元素的损失权重。自适应权重自适应机制的构建分为4个步骤(如3a~3d所示)
    3a.保持小于γ的软元素,其余的设为0,记为 R ‘ e a s y R^`easy Reasy
    3b. R ‘ e a s y R^`easy Reasy通过填充零,映射到与H *相同的潜空间,称为 R e a s y R_{easy} Reasy,以便后续与H *进行运算
    3c.将 R e a s y R_{easy} Reasy与H∗ 做矩阵元素相乘(哈达玛乘积)得到: R easy  ⊙ H ∗ R_{\text {easy }} \odot H^{*} Reasy H
    3d.然后将其做一系列卷积和激活操作φα(·),得到 α = ϕ α ( R easy  ⊙ H ∗ ) \alpha=\phi_{\alpha}\left(R_{\text {easy }} \odot H^{*}\right) α=ϕα(Reasy H),硬元素采用类似的的方法得到 β = ϕ β ( R hard  ⊙ H ∗ ) \beta=\phi_{\beta}\left(R_{\text {hard }} \odot H^{*}\right) β=ϕβ(Rhard H)
  4. 在培训过程中,更应该把重点放在最难的部分,因此,权重β应大于α。为此,我们在LALR中设计了softplus(max(α)−min(β))的正则化项来满足它。这里,y = softplus(x) = ln(1 + ex)是一个单调递增函数,通过避免负损失值来帮助数值优化。

根据步骤1-4,ALR损失定义为: L i A L R = 1 N ⋅ D ( ∥ α i ⊙ R easy  i ∥ F + ∥ β i ⊙ R hard  i ∥ F + ∥ softplus ⁡ ( max ⁡ ( α i ) − min ⁡ ( β i ) ) ∥ F ) \begin{array}{l} L_{i}^{A L R}=\frac{1}{N \cdot D}\left(\left\|\alpha_{i} \odot R_{\text {easy }_{i}}\right\|_{F}+\left\|\beta_{i} \odot R_{\text {hard }_{i}}\right\|_{F}\right. \left.+\left\|\operatorname{softplus}\left(\max \left(\alpha_{i}\right)-\min \left(\beta_{i}\right)\right)\right\|_{F}\right) \end{array} LiALR=ND1( αiReasy i F+βiRhard iF+softplus(max(αi)min(βi))F)

其中,下标F代表矩阵的F-范数

3️⃣、构建文本视觉矩阵(TVM)

基于修正后的SSM语义相似矩阵,对于第K个图像子区域,词动态表示为: h i − 1 k , q i − 1 k = ∑ j = 1 T θ j , k w j h_{i-1}^{k} \text ,q_{i-1}^{k}=\sum_{j=1}^{T} \theta_{j, k} w_{j} hi1k,qi1k=j=1Tθj,kwj,因此,用于词嵌入W和图像特征Hi−1的文本-视觉矩阵(TVM)表示为 Q i − 1 Q_{i−1} Qi1

最后将文本视觉矩阵TVM的矩阵 Q i − 1 Q_{i−1} Qi1与图像特征 H i − 1 H_{i−1} Hi1进行拼接,送入ResBlocks和Upsampling模块输出图像特征 H i H_i Hi

3.3、布局视觉细化(LVR)损失

在精细化布局结构的基础上,进一步增强布局区域内的视觉表现力。为此,我们提出了布局视觉细化(LVR)损失来增强布局中的纹理感知和风格信息。

LVR损失包括感知细化(PR)损失和风格细化(SR)损失。

感知细化(PR)损失: L i P R = 1 N ⋅ D ∥ M a s k Θ i ⊙ H i − Mask ⁡ Θ i ∗ ⊙ H i ∗ ∥ F L_{i}^{P R}=\frac{1}{N \cdot D}\left\|M a s k_{\Theta_{i}} \odot H_{i}-\operatorname{Mask}_{\Theta_{i}^{*}} \odot H_{i}^{*}\right\|_{F} LiPR=ND1 MaskΘiHiMaskΘiHi F
风格细化(SR)损失: L i S R = 1 N ⋅ D ∥ G (  Mask  Θ i ⊙ H i ) − G ( Mask ⁡ Θ i ∗ ⊙ H i ∗ ) ∥ F L_{i}^{S R}=\frac{1}{N \cdot D} \| \mathcal{G}\left(\text { Mask }_{\Theta_{i}} \odot H_{i}\right)-\mathcal{G}\left(\operatorname{Mask}_{\Theta_{i}^{*}} \odot H_{i}^{*}\right) \|_{F} LiSR=ND1G( Mask ΘiHi)G(MaskΘiHi)F

四、ALR-GAN的总体损失

结合上述模块,在ALR-GAN的第i阶段,生成损失 L G i L_{G_i} LGi定义为 L G i = − 1 2 E I ^ i ∼ P G i [ log ⁡ D i ( I ^ i ) ] ⏟ unconditional loss  − 1 2 E I ^ i ∼ P G i [ log ⁡ D i ( I ^ i , s ) ] ⏟ conditional loss  , L_{G_{i}}=\underbrace{-\frac{1}{2} \mathbb{E}_{\hat{I}_{i} \sim P_{G_{i}}}\left[\log D_{i}\left(\hat{I}_{i}\right)\right]}_{\text {unconditional loss }}-\underbrace{\frac{1}{2} \mathbb{E}_{\hat{I}_{i} \sim P_{G_{i}}}\left[\log D_{i}\left(\hat{I}_{i}, s\right)\right]}_{\text {conditional loss }}, LGi=unconditional loss  21EI^iPGi[logDi(I^i)]conditional loss  21EI^iPGi[logDi(I^i,s)],
其中,无条件损失推动合成图像更真实,以欺骗鉴别器,而条件损失驱动合成图像更好地匹配相应的文本描述。判别损失定义为:
L D i = − 1 2 E I i ∗ ∼ P data  i [ log ⁡ D i ( I i ∗ ) ] − 1 2 E I ^ i ∼ P G i [ log ⁡ ( 1 − D i ( I ^ i ) ] ⏟ unconditional loss  + − 1 2 E I i ∗ ∼ P d a t a i [ log ⁡ D i ( I i ∗ , s ) ] − 1 2 E I ^ i ∼ P G i [ log ⁡ ( 1 − D i ( I ^ i , s ) ] ⏟ conditional loss  , \begin{aligned} L_{D_{i}}= & \underbrace{-\frac{1}{2} \mathbb{E}_{I_{i}^{*} \sim P_{\text {data }_{i}}}\left[\log D_{i}\left(I_{i}^{*}\right)\right]-\frac{1}{2} \mathbb{E}_{\hat{I}_{i} \sim P_{G_{i}}}\left[\log \left(1-D_{i}\left(\hat{I}_{i}\right)\right]\right.}_{\text {unconditional loss }}+ \\ & \underbrace{-\frac{1}{2} \mathbb{E}_{I_{i}^{*} \sim P_{d a t a_{i}}}\left[\log D_{i}\left(I_{i}^{*}, s\right)\right]-\frac{1}{2} \mathbb{E}_{\hat{I}_{i} \sim P_{G_{i}}}\left[\log \left(1-D_{i}\left(\hat{I}_{i}, s\right)\right]\right.}_{\text {conditional loss }}, \end{aligned} LDi=unconditional loss  21EIiPdata i[logDi(Ii)]21EI^iPGi[log(1Di(I^i)]+conditional loss  21EIiPdatai[logDi(Ii,s)]21EI^iPGi[log(1Di(I^i,s)],
其中 I I ∗ I^*_I II I ^ i \hat{I}_{i} I^i是第i个尺度图像,判别损失 L D i L_{Di} LDi从真实图像分布或合成图像分布中对输入图像采样进行分类。

生成网络最终目标函数定义为: L G = ∑ i = 0 m − 1 L G i + ∑ i = 1 m − 1 [ L i A L R + λ 1 L i R E C + L i L V R ] + λ 2 L D A M S M L_{G}=\sum_{i=0}^{m-1} L_{G_{i}}+\sum_{i=1}^{m-1}\left[L_{i}^{A L R}+\lambda_{1} L_{i}^{R E C}+L_{i}^{L V R}\right]+\lambda_{2} L_{D A M S M} LG=i=0m1LGi+i=1m1[LiALR+λ1LiREC+LiLVR]+λ2LDAMSM
判别网络的最终目标函数定义为: L D = ∑ i = 0 m − 1 L D i L_{D}=\sum_{i=0}^{m-1} L_{D_{i}} LD=i=0m1LDi

五、实验

5.1、实验设置

数据集:CUB-Bird、MS-COCO
Baseline: AttnGAN
评价指标:作者一共选用了四个度量指标即:Inception Score (IS↑)、Fréchet Inception Distance (FID↓)、Semantic Object Accuracy (SOA↑)、R-precision↑

5.2、实验结果

1️⃣、定量实验:

在这里插入图片描述
训练时间、训练周期、模型大小和测试时间:
在这里插入图片描述

2️⃣、视觉效果

在这里插入图片描述
在这里插入图片描述

3️⃣、细微改变后的布局变化

在这里插入图片描述
ALR-GAN在MS-COCO测试集上捕捉文本描述细微变化(红色短语或单词)的能力,并以合理的布局合成不同的图像。

4️⃣、消融实验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、总结

说实话这篇文章我暂时也没看很懂,原理部分还有待仔细研习,但值得一提的是,本文的实验做的非常充分,特别是消融实验,做的很严谨,建议看原文学习一下。而且在单阶段GAN大流行的情况下,这篇多阶段GAN仍然有很大的学习和借鉴价值。

这篇论文提出了一个文本到图像的生成模型:ALR-GAN,以改进合成图像的布局。ALR- GAN包括ALR模块和LVR损耗

ALR模块结合所提出的ALR损失自适应地细化了合成图像的布局结构。LVR损失在细化布局的基础上,进一步细化布局区域内的视觉表现。实验结果和分析证明了这些方案的有效性,ALR模块和LVR损耗提高了其他基于gan的T2I方法的性能。

💡 最后

我们已经建立了🏤T2I研学社群,如果你还有其他疑问或者对🎓文本生成图像很感兴趣,可以私信我加入社群

📝 加入社群 抱团学习:中杯可乐多加冰-深度学习T2I研习群

🔥 限时免费订阅:文本生成图像T2I专栏

🎉 支持我:点赞👍+收藏⭐️+留言📝

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/368851.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Frenet优化轨迹的⾃动驾驶动作规划⽅法

动作规划&#xff08;Motion Control&#xff09;在⾃动驾驶汽⻋规划模块的最底层&#xff0c;它负责根据当前配置和⽬标配置⽣成⼀序列的动作&#xff0c;本⽂介绍⼀种基于Frenet坐标系的优化轨迹动作规划⽅法&#xff0c;该⽅法在⾼速情况下的ACC辅助驾驶和⽆⼈驾驶都具有较强…

浅谈MySQL索引

目录 1.索引的定义 2.索引的原理 3.Hash索引与B Tree索引 4.索引的分类 5.建立索引的注意事项 1.索引的定义 索引是存储引擎用于快速找到数据记录的一种数据结构&#xff0c;它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。 索…

python常见问题详解

Python python 没有多态&#xff0c;而是鸭子类型 多继承&#xff0c;没有接口&#xff0c;可通过语法糖实现接口的作用 lambda中只能有一句 "/"表示之前的参数是必须是位置参数&#xff0c;”**“表示是后面的必须是关键字参数 Python多进程 Python 多线程是伪多线…

ASE0510SH-ASEMI的MOS管ASE0510SH

编辑-Z ASE0510SH在SOT-89封装里的静态漏极源导通电阻&#xff08;RDS(ON)&#xff09;为140mΩ&#xff0c;是一款N沟道中低压MOS管。ASE0510SH的最大脉冲正向电流ISM为15A&#xff0c;零栅极电压漏极电流(IDSS)为1uA&#xff0c;其工作时耐温度范围为-55~150摄氏度。ASE0510…

Mac电脑_GitHub提交项目至仓库

第一步&#xff08;准备工作&#xff09;&#xff1a; Mac 电脑自带 git &#xff0c; 无需安装 1. 创建一个项目 demo1 在 github 上 2. 创建 ssh 密钥 打开终端&#xff1a; ssh-keygen -t rsa -C "your_emailyouremail.com" 此处输入两次密码&#xff0c; 直接…

Linux-MYSQL 登录数据库(命令行,图形化) 及 远程登录

命令行登录 &#xff1a;mysql 命令登录数据库语法 &#xff1a; mysql -u用户名 -p密码 -h 连接的数据库服务器的ip [-D] 数据库名 -p 端口注 &#xff1a; 上面的 mysql 命令是指的是 客户端的指令 ~&#xff01;&#xff01;-h &#xff1a; 指的就是 连接数据库服务器的 ip…

并发编程学习篇ReentrantLock设计思想剖析

一、AQS原理剖析 什么是AQS java.util.concurrent包中的大多数同步器实现都是围绕着共同的基础行为&#xff0c;比如 等待队列、条件队列、独占获取、共享获取等而这些行为的抽象就是基于AbstractQueuedSynchronizer&#xff08;简称AQS&#xff09;实现的&#xff0c;AQS是一…

如何使用开源 BI 工具 DataEase 实现系列数据分析呢?

当我们使用可视化分析工具制作仪表板时&#xff0c;可能需要制作的仪表板不是单个单个的可视化大屏&#xff0c;而是一系列的仪表板&#xff0c;我们需要用它来产生一个连续性的故事&#xff0c;那么这个时候我们该怎么办呢&#xff1f;例如说总分形式&#xff0c;我们需要一个…

18. linux系统基础

shell 命令解析器 命令解析器作用&#xff1a; 他把在终端上输出的命令 给你解析成内核可以识别的指令&#xff0c;内核 是经过命令解析器的加工 shell在找命令的时候&#xff0c;所包含的路径&#xff0c;就是在这些路径里去 找 找到就执行 找不到就报错 报错 要么 这个命…

mars3d加载建筑物白膜及简单建筑物样式

首先需要拥有shp格式的数据。可以通过水经微图下载&#xff0c;注意此软件是付费的将shp格式的数据处理为切片数据&#xff0c;可以使用cesiumlab处理完成得到json数据就可以在mars3d中加载了 function init() { // 判断webgl支持 if (!mars3d.Util.webglreport()) { …

20分钟10张动图8个示例带你更好的理解EventLoop

介绍 JavaScript 主要在 Node.js 和浏览器中的单个线程上执行(有一些例外,例如工作线程,这超 出了当前文章的范围)。在本文中,我将尝试解释 Node.js 的并发机制,即事件循环。 例子 我相信通过示例学习是最好的,因此我将从 4 个简单的代码示例开始。我将分析示…

持久化存储PV与PVC

1.PV与PVC PV&#xff1a; 持久卷&#xff08;PersistentVolume&#xff09;简称PV&#xff0c;是集群中的一块存储&#xff0c;可以由管理员事先供应。 可以配置NFS、Ceph等常用存储配置&#xff0c;相对于volumes&#xff0c;提供了更多的功能&#xff0c;如生命周期管理、大…

用了10年Postman,意想不到它的Mock功能也如此强大

最近在做一些app&#xff0c;前后端分离的开发模式是必须的。一直用的python flask做后端的快速POC&#xff0c;python本身就是一门胶水语言&#xff0c;开发起来方便快捷&#xff0c;而flask又是一个极简的webserver框架&#xff08;比Django简洁&#xff09;。但在这里推荐的…

关于我利用python开发的PC端标注软件及目标检测软件

如何利用python快速开发PC端目标检测及数据标注软件概述开发软件背景开发第一步&#xff1a;功能需求分析开发第二步&#xff1a; 前端分区设计开发第三步&#xff1a;功能开发开发第四步&#xff1a;程序功能的打包与检查开发第五步&#xff1a;程序的反馈与改善一个例子的展示…

算法设计与分析期末考试复习(二)

分治法 将一个难以直接解决的大问题&#xff0c;分割成一些规模较小的相同问题&#xff0c;以便各个击破&#xff0c;分而治之。最好使子问题的规模大致相同。 分解&#xff08;Divide&#xff09;&#xff1a;将一个难以直接解决的大问题&#xff0c;分割成一些规模较小的子…

个人电脑需求严重疲软,联想集团财务前景仍不乐观

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 财务业绩 联想集团&#xff08;00992&#xff09;于2月16日盘后公布了2023财年第三季度财报。 财报显示联想集团2023年第三季度的收入为152.67亿美元&#xff0c;从2022年第三季度的2011.27亿美元下降了24.1%。这也导致该公…

那些开发中需要遵守的产研开发规范

入职新公司第三天&#xff0c;没干啥其他活&#xff0c;基本在阅读产研开发规范。公司在技术方面沿用的是阿里的一套技术&#xff0c;所以入职之前需要先阅读《阿里巴巴开发规范》。今天整理一些平时需要关注的阿里规约和数据库开发规范&#xff0c;方便今后在开发过程中查阅。…

如何判断你的孩子是否适合IB课程?

IB课程最开始是IBO为外交官子女开设全球统一标准的课程&#xff0c;后为全球学生开设从幼儿园到大学预科的课程&#xff0c;为学生提供智力、情感、个人发展、社会技能等方面的教育。IB课程分为标准难度课程和具有挑战性的高难度课程。要求学生至少选择6门课加Theory of Knowle…

Java 日期时间与正则表达式,超详细整理,适合新手入门

目录 1、java.time.LocalDate类表示日期&#xff1b; 2、java.time.LocalTime类表示时间&#xff1b; 3、java.time.LocalDateTime类表示日期和时间&#xff1b; 4、java.time.format.DateTimeFormatter类用于格式化日期和时间&#xff1b; 5、创建正则表达式对象 6、匹配…

spring-boot、spring-cloud、spring-cloud-alibaba版本对应

一、查询 spring-boot(spring-boot-starter-parent) 版本号 https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-parent 二、查询 spring-cloud(spring-cloud-dependencies) 版本号 https://mvnrepository.com/artifact/org.springframework…