06- OpenCV查找图像轮廓 (OpenCV系列) (机器视觉)

news2025/7/28 12:14:08

知识重点

  • 灰度图转换:  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  • 二值化: 返回两个东西,一个阈值, 一个是二值化的图:  thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
  • 查找轮廓: 返回两个结果,分别是轮廓和层级:  contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE )
  • 描绘轮廓: cv2.drawContours(img_copy, contours, -1, (0, 0, 255), 2) 索引取-1时描绘所有轮廓.
  • 轮廓面积计算:  area = cv2.contourArea(contours[1])    # print('area: ', area)
  • 轮廓周长计算:  perimeter = cv2.arcLength(contours[1], closed = False)   # perimeter 周长
  • 多边形逼近:  approx = cv2.approxPolyDP(contours[0], 6, closed = True)
  • 凸包计算:  hull = cv2.convexHull(contours[0])  凸包指的是完全包含原有轮廓,并且仅由轮廓上的点所构成的多边形
  • 最小外接矩形:  rect = cv2.minAreaRect(contours[1])  
    • box = cv2.boxPoints(rect) 
    • box = np.round(box).astype('int64')   # 注意坐标必须是整数的, 所以需要转化一下
    • cv2.drawContours(img, [box], 0, (255, 0, 0), 2)
  • 最大外接矩形:  x, y, w, h = cv2.boundingRect(contours[1])  # 最大外接矩形参数, (x,y), (w, h)

    • cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)

  • 外接圆:  (a, b), radius = cv2.minEnclosingCircle(contours[1])  # , 返回圆的中心点和半径

    • cv2.circle(img, (int(a), int(b)), int(radius), (0, 255, 0), 2)


7. 图像轮廓

7.1 什么是图像轮廓

图像轮廓是具有相同颜色或灰度的连续点的曲线. 轮廓在形状分析和物体的检测和识别中很有用。

轮廓的作用:

  • 用于图形分析

  • 物体的识别和检测

注意点:

  • 为了检测的准确性,需要先对图像进行二值化Canny操作

  • 画轮廓时会修改输入的图像, 如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。

7.2 查找轮廓

  • findContours(image, mode, method[, contours[, hierarchy[, offset]]])

    • mode 查找轮廓的模式

      • RETR_EXTERNAL = 0, 表示只检测外围轮廓

      • RETR_LIST = 1, 检测的轮廓不建立等级关系, 即检测所有轮廓, 较为常用

      • RETR_CCOMP = 2, 每层最多两级, 从小到大, 从里到外.

      • RETR_TREE = 3, 按照树型存储轮廓, 从大到小, 从右到左.

import cv2
import numpy as np

# 显示黑白,实际为彩图
img = cv2.imread('./contours1.jpeg')
# 先变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化,返回两个东西,一个阈值, 一个是二值化的图
thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)

# 查找轮廓,新版本返回两个结果,分别是轮廓和层级
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# 画轮廓是会直接修改原图,如果保证原图不变,建议先拷贝
img_copy = img.copy()
cv2.drawContours(img_copy, contours, -1, (0, 0, 255), 2)  # 索引轮廓

cv2.imshow('img', img)
cv2.imshow('img_copy', img_copy)
cv2.waitKey(0)
cv2.destroyAllWindows()

  • method 轮廓近似方法也叫 ApproximationMode
    • CHAIN_APPROX_NONE 保存所有轮廓上的点

    • CHAIN_APPROX_SIMPLE, 只保存角点, 比如四边形, 只保留四边形的4个角, 存储信息少, 比较常用

  • 返回 contours和hierachy 即轮廓和层级

7.3 绘制轮廓

  • drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]])

    • image 要绘制的轮廓图像

    • contours轮廓点

    • contourIdx 要绘制的轮廓的编号. -1 表示绘制所有轮廓

    • color 轮廓的颜色, 如 (0, 0, 255)表示红色

    • thickness 线宽, -1 表示全部填充

import cv2
import numpy as np

# 显示黑白,实际为彩图
img = cv2.imread('./contours1.jpeg')
# 先变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化,返回两个东西,一个阈值, 一个是二值化的图
thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)

# 查找轮廓,新版本返回两个结果,分别是轮廓和层级
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 画轮廓是会直接修改原图,如果保证原图不变,建议先拷贝
img_copy = img.copy()
cv2.drawContours(img_copy, contours, 1, (0, 0, 255), 2)  # 看1#的轮廓

cv2.imshow('img', img)
cv2.imshow('img_copy', img_copy)
cv2.waitKey(0)
cv2.destroyAllWindows()

7.4 轮廓的面积和周长

轮廓面积是指每个轮廓中所有的像素点围成区域的面积,单位为像素。

轮廓面积是轮廓重要的统计特性之一,通过轮廓面积的大小可以进一步分析每个轮廓隐含的信息,例如通过轮廓面积区分物体大小识别不同的物体。在查找到轮廓后, 可能会有很多细小的轮廓, 我们可以通过轮廓的面积进行过滤.

  • contourArea(contour)

  • arcLength(curve, closed)

    • curve即轮廓

    • closed是否是闭合的轮廓

import cv2
import numpy as np

# 显示黑白,实际为彩图
img = cv2.imread('./contours1.jpeg')

# 先变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化,返回两个东西,一个阈值, 一个是二值化的图
thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
# 查找轮廓,新版本返回两个结果,分别是轮廓和层级
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 画轮廓是会直接修改原图,如果保证原图不变,建议先拷贝
img_copy = img.copy()
cv2.drawContours(img_copy, contours, 1, (0, 0, 255), 2)  # 索引轮廓

# 计算轮廓面积
area = cv2.contourArea(contours[1])
print('area: ', area)     # area:  74798.0
# 计算轮廓周长
perimeter = cv2.arcLength(contours[1], closed = False)
print('perimeter: ',perimeter)     # perimeter:  821.656

cv2.imshow('img', img)
cv2.imshow('img_copy', img_copy)
cv2.waitKey(0)
cv2.destroyAllWindows()

7.5 多边形逼近与凸包

findContours后的轮廓信息contours可能过于复杂不平滑,可以用approxPolyDP函数对该多边形曲线做适当近似,这就是轮廓的多边形逼近.apporxPolyDP就是以多边形去逼近轮廓,采用的是Douglas-Peucker算法(方法名中的DP),DP算法原理比较简单,核心就是不断找多边形最远的点加入形成新的多边形,直到最短距离小于指定的精度。

  • approxPolyDP(curve, epsilon, closed[, approxCurve])

    • curve 要近似逼近的轮廓

    • epsilon 即DP算法使用的阈值

    • closed 轮廓是否闭合

import cv2
import numpy as np

# 显示黑白,实际为彩图
img = cv2.imread('./hand.png')
# print(img.shape)
# 先变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化,返回两个东西,一个阈值, 一个是二值化的图
thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
# 查找轮廓,新版本返回两个结果,分别是轮廓和层级
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 画轮廓是会直接修改原图,如果保证原图不变,建议先拷贝
img_copy = img.copy()
cv2.drawContours(img_copy, contours, 0, (0, 0, 255), 2)  # 索引轮廓

# 使用多边形逼近,近似模拟多边形的轮廓
approx = cv2.approxPolyDP(contours[0], 6, closed = True)
# approx 本质是一个类型的轮廓
# 画出多边形逼近的轮廓
cv2.drawContours(img_copy, [approx], 0, (0, 255, 0), 2) 

cv2.imshow('img_copy', img_copy)
cv2.waitKey(0)
cv2.destroyAllWindows()

逼近多边形是轮廓的高度近似,但是有时候,我们希望使用一个多边形的凸包来简化它。凸包跟逼近多边形很像,只不过它是物体最外层的凸多边形。凸包指的是完全包含原有轮廓,并且仅由轮廓上的点所构成的多边形。凸包的每一处都是凸的,即在凸包内连接任意两点的直线都在凸包的内部。在凸包内,任意连续三个点的内角小于180°。

  • convexHull(points[, hull[, clockwise[, returnPoints]]])

    • points 即轮廓

    • colckwise 顺时针绘制

import cv2
import numpy as np

img = cv2.imread('./hand.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
therth, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
cv2.drawContours(img, contours, 0, (0, 0, 255), 2)

# 计算凸包
hull = cv2.convexHull(contours[0])
# 画出凸包
cv2.drawContours(img, [hull], 0, (255, 0, 0), 2)

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

7.6 外接矩形及外接圆

外接矩形分为最小外接矩形和最大外接矩形.

下图中红色矩形是最小外接矩形, 绿色矩形为最大外接矩形.

  • minAreaRect(points) 最小外接矩阵

    • points 即为轮廓

    • 返回元组, 内容是一个旋转矩形(RotatedRect)的参数: 矩形的起始坐标x,y, 矩形的宽度和高度, 矩形的选择角度.

  • boundingRect(points) 最大外接矩阵

    • points 即为轮廓a

  • cv2.minEnclosingCircle(points) 最小外接圆

import cv2
import numpy as np

img =cv2.imread('./hello.jpeg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
thersh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# rect是一个Rotated Rect 旋转的矩形, 矩形的起始坐标(x,y), 矩形的长宽, 矩形旋转角度
rect = cv2.minAreaRect(contours[1])
# 其实就是帮我们把旋转矩阵的4个坐标点计算出来了.
# 注意坐标必须是整数的, 所以需要转化一下
box = cv2.boxPoints(rect)
# 四舍五入
box = np.round(box).astype('int64')
# 绘制最小外接矩形
cv2.drawContours(img, [box], 0, (255, 0, 0), 2)

# 最大外接矩形, 返回最大外接矩形的参数, (x,y), (w, h)
x, y, w, h = cv2.boundingRect(contours[1])
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)

# 外接圆, 返回圆的中心点和半径
(a, b), radius = cv2.minEnclosingCircle(contours[1])
# 画出圆
cv2.circle(img, (int(a), int(b)), int(radius), (0, 255, 0), 2)

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/368012.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

白帽黑客入行应该怎么学?零基础小白也能轻松上手!

这几年随着我国《国家网络空间安全战略》《网络安全法》《网络安全等级保护2.0》等一系列政策/法规/标准的持续落地,网络安全行业地位、薪资随之水涨船高。 1为什么网络安全行业是IT行业最后的红利? 根据腾讯安全发布的《互联网安全报告》,…

Python每日一练(20230224)

目录 1. 列表奇偶拆分 ★ 2. 二叉树的后序遍历 ★★ 3. 接雨水 ★★★ 附录 二叉树 特点 性质 特殊二叉树 满二叉树 完全二叉树 完全二叉树性质 二叉树的遍历 1. 列表奇偶拆分 【问题描述】 输入一个列表,包含若干个整数(允许为空&#xff…

Spring Batch 高级篇-并行步骤

目录 引言 概念 案例 转视频版 引言 接着上篇:Spring Batch 高级篇-多线程步骤,了解Spring Batch多线程步骤后,接下来一起学习一下Spring Batch 高级功能-并行步骤 概念 并行步骤,指的是某2个或者多个步骤同时执行。比如下…

Ask林曦|来回答,30个你关心的日常问题(二)

在林曦老师的线上书法直播课上,上课前后的聊天时间里,时常有同学向林曦老师提问,这些问题涵盖了日常生活的诸多方面,从身体的保养,到快乐的法门,皆是大家感兴趣的,也都共同关切的。   暄桐教室…

python+Vue学生作业系统 django课程在线学习网站系统

系统分为学生,教师,管理员三个角色: 学生功能: 1.学生注册登录系统 2.学生查看个人信息,修改个人信息 3.学生查看主页综合评价,查看今日值班信息 4.学生在线申请请假信息,查看请假的审核结果和请…

180、【动态规划】leetcode ——583. 两个字符串的删除操作:两种动态规划思路(C++版本)

题目描述 原题链接:583. 两个字符串的删除操作 解题思路 (1)基于求最长公共子序列思路 本题与 1143. 最长公共子序列 的区别在于,1143中求的是两个序列中的最长公共子序列,而本题是要找到最少删除多少个元素后可以得…

PHP程序员适合创业吗?

创业是一件自然而然的事,不需要人为选择。 只要你是一个努力能干主动的人,当你在一个行业深耕5年之后,就会发现人生发展的下一步就是创业。当然如果行业合适的话。 什么叫行业合适呢? 就是创业的成本并不那么高,不需…

怎么在LinkedIn领英安全添加到3万个好友?

根据领英最新公布的数据:领英全球用户数已经达到8.3亿,超5800万个公司主页,可以说是世界上最-大的business database。 这就不难理解为什么越来越多的外贸人,开始认真尝试和重视在领英开发客户,因为领英确实是外贸人&a…

鸿蒙3.0 APP混合开发闪退问题笔记

APP采用cordova混合开发, 鸿蒙2.0以及安卓操作系统正常使用,但是在鸿蒙3.0中出现APP闪退,对APP进行真机调试发现,鸿蒙3.0系统对crosswork插件存在兼容问题,这些问题会导致APP页面加载失败,进而导致App闪退测…

扬帆优配|“涨停敢死队”慌了?监管“盯紧”异常交易

日前,沪深买卖所发布《主板股票反常买卖实时监控细则》,对反常买卖行为的类型和标准作出规则。其间,针对“打板”“封板”等反常行为的监控遭到商场重视,有商场传闻称,新规或导致高频买卖毁灭,“量价型股票…

什么蓝牙耳机打游戏好?打游戏好用的无线蓝牙耳机

午休或是周末约上好友玩两局游戏,是忙里偷闲的快乐时刻,对于普通游戏玩家,其实耳机够用就行,下面就分享几款打游戏好用的蓝牙耳机。 一、南卡小音舱蓝牙耳机 蓝牙版本:5.3 推荐系数:五颗星 南卡小音舱li…

【代码随想录二刷】Day24-回溯-C++

代码随想录二刷Day24 今日任务 理论基础 77.组合 语言:C 理论基础 解决的问题 ① 组合问题:不考虑顺序 ② 切割问题 ③ 子集问题 ④ 排列问题:考虑顺序 ⑤ 棋盘问题:N皇后,解数独回溯法三部曲 ① 回溯函数模板返回…

ChatGPT来了,软件测试工程师距离失业还远吗?

小伙伴们前一段是不是都看到过ChatGPT的相关视频,那它到底是什么?对软件测试行业会有什么影响? 今天汇智妹就用一篇文章来给大家讲清楚。 一、ChatGPT是什么? 简单来说,ChatGPT是一款人工智能聊天机器人,…

【Spring中@Autowired和@Resource注解的区别?】

一.背景 Spring中Autowired和Resource注解的区别? Spring框架想必大家都知道吧,那么Spring中Autowired和Resource注解的区别你知道吗?如果不知道也不要紧,我们就一起来学习一起吧。 二.Autowired和Resource注解的区别&#xff1f…

【人工智能 AI 】您可以使用机器人流程自动化 (RPA) 实现自动化的 10 个业务流程:Robotic Process Automation (RPA)

摘:人类劳动正在被机器(例如在工业中)或计算机程序(适用于所有行业)所取代。 目录 10 processes you can robotise in your company您可以在公司中实现自动化的 10 个流程 Human employees or robotic workers?人类员工还是机器人工人? Robots take over headhunting…

【蓝桥杯每日一题】二分算法

🍎 博客主页:🌙披星戴月的贾维斯 🍎 欢迎关注:👍点赞🍃收藏🔥留言 🍇系列专栏:🌙 蓝桥杯 🌙我与杀戮之中绽放,亦如黎明的花…

乘上算力发展的东风,联想这次能否变革突起?

“逆水行舟,不进则退”笔者认为这句话也同样适用到现在的联想集团身上,近3年受到疫情的影响全球电子领域普遍不突出,智能手机出货量上涨乏力,个人电脑(PC)的销量也波动频繁,联想集团在这种不乐观…

外包整整干了一年,废了。。。

先说一下自己的个人情况,大专生,18年通过校招进入湖南某软件公司,干了接近3年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了…

蓝牙标签操作指南

一、APP安装指南 1.APP权限问题 电子标签APP安装之后,会提示一些权限的申请,点击允许。否则某些会影响APP的正常运行。安装后,搜索不到蓝牙标签,可以关闭App,重新打开。 2.手机功能 运行APP时候,需要打开…

汽车零部件行业mes系统具体功能介绍

众所周知,汽车零部件的组装是汽车制造的关键环节,而汽车零部件江湖变革以精益为终极目标。即汽车零部件制造企业转型升级向精益生产和精益管理方向前进,而车间信息化管理是精益化生产的基础。 汽车零部件行业现状 随着全球汽车产业不断升级…