Java使用MD5加盐对密码进行加密处理,附注册和登录加密解密处理

news2025/7/17 16:58:53

前言

在开发的时候,有一些敏感信息是不能直接通过明白直接保存到数据库的。最经典的就是密码了。如果直接把密码以明文的形式入库,不仅会泄露用户的隐私,对系统也是极其的不厉,这样做是非常危险的。

那么我们就需要对这些铭文进行加密。

Java常用加密手段

现在市场是加密的方式已经有很多了,像Base64加密算法(编码方式),MD5加密(消息摘要算法,验证信息完整性),对称加密算法,非对称加密算法,数字签名算法,数字证书,CA认证等等。。

场景加密手段应用场景

Base64应用场景:图片转码(应用于邮件,img标签,http加密)

MD5应用场景:密码加密、imei加密、文件校验

非对称加密:电商订单付款、银行相关业务

MD5加密的风险

如果直接使用MD5进行加密,其实是不安全的,这是是可以验证的,比如下面这个例子:

我直接使用MD5对123456的密码进行加密。看着很牛是吧,一串随机数,但是其实一碰就碎

在这里插入图片描述

接下来就使用大家常用的一个网站进行破解:MD5破解网站

把刚才生成的MD5加密后的密码进行解密。

轻松破解,别说黑客了,这个网站都能破解出来,那风险有多大就不用说了

在这里插入图片描述

所以我们需要采取一些措施,用于二次不强MD5加密后的密码,针对这种方式,现在大多数采取的方式就是加盐

什么是盐?

盐(salt)一般是一个随机生成的字符串或者常量。我们将盐与原始密码连接在一起(放在前面或后面都可以),然后将拼接后的字符串加密。salt这个值是由系统随机生成的,并且只有系统知道。即便两个用户使用了同一个密码,由于系统为它们生成的salt值不同,散列值也是不同的。

加salt可以一定程度上解决这一问题。所谓加salt方法,就是加点“佐料”。其基本想法是这样的:当用户首次提供密码时(通常是注册时),由系统自动往这个密码里撒一些“佐料”,然后再散列。而当用户登录时,系统为用户提供的代码撒上同样的“佐料”,然后散列,再比较散列值,已确定密码是否正确。

这样也就变成了将密码+自定义的盐值来取MD5。但是如果黑客拿到了你的固定的盐值,那这样也不安全了。所以比较好的做法是用随机盐值。用户登陆时再根据用户名取到这个随机的盐值来计算MD5。

个人建议把盐设置成随机数而不是常量,这样更加安全。

引入MD5工具类

坐标如下:

<!--MD5加密 对铭文信息进行加密操作-->
<dependency>
   <groupId>commons-codec</groupId>
   <artifactId>commons-codec</artifactId>
</dependency>

在这里插入图片描述

编写MD5加盐工具类

这种对铭文加密的操作,我们可以封装成一个工具类,在这里我们主要进行对明文密码进行MD5加密,并且进行二次加盐加密,以及对比加盐后的密码和初始密码是否相同。

直接把全部代码附上:

package com.wyh.util;

import org.apache.commons.codec.binary.Hex;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Random;

/**
 * @Author 魏一鹤
 * @Description 将明文密码进行MD5加盐加密
 * @Date 23:18 2023/2/7
 **/
public class SaltMD5Util {

    /**
     * @Author 魏一鹤
     * @Description 生成普通的MD5密码
     * @Date 23:17 2023/2/7
     **/
    public static String MD5(String input) {
        MessageDigest md5 = null;
        try {
            // 生成普通的MD5密码
            md5 = MessageDigest.getInstance("MD5");
        } catch (NoSuchAlgorithmException e) {
            return "check jdk";
        } catch (Exception e) {
            e.printStackTrace();
            return "";
        }
        char[] charArray = input.toCharArray();
        byte[] byteArray = new byte[charArray.length];
        for (int i = 0; i < charArray.length; i++)
            byteArray[i] = (byte) charArray[i];
        byte[] md5Bytes = md5.digest(byteArray);
        StringBuffer hexValue = new StringBuffer();
        for (int i = 0; i < md5Bytes.length; i++) {
            int val = ((int) md5Bytes[i]) & 0xff;
            if (val < 16)
                hexValue.append("0");
            hexValue.append(Integer.toHexString(val));
        }
        return hexValue.toString();
    }

    /**
     * @Author 魏一鹤
     * @Description 生成盐和加盐后的MD5码,并将盐混入到MD5码中,对MD5密码进行加强
     * @Date 23:17 2023/2/7
     **/
    public static String generateSaltPassword(String password) {
        Random random = new Random();
        //生成一个16位的随机数,也就是所谓的盐
        /**
         * 此处的盐也可以定义成一个系统复杂点的常量,而不是非要靠靠随机数随机出来 两种方式任选其一 例如下面这行代码:
         * 盐加密 :SALT的字符串是随意打的,目的是把MD5加密后的再次加密变得复杂
         * public static final String SALT = "fskdhfiuhjfshfjhsad4354%@!@#%3";
         **/
        StringBuilder stringBuilder = new StringBuilder(16);
        stringBuilder.append(random.nextInt(99999999)).append(random.nextInt(99999999));
        int len = stringBuilder.length();
        if (len < 16) {
            for (int i = 0; i < 16 - len; i++) {
                stringBuilder.append("0");
            }
        }
        // 生成盐
        String salt = stringBuilder.toString();
        //将盐加到明文中,并生成新的MD5码
        password = md5Hex(password + salt);
        //将盐混到新生成的MD5码中,之所以这样做是为了后期更方便的校验明文和秘文,也可以不用这么做,不过要将盐单独存下来,不推荐这种方式
        char[] cs = new char[48];
        for (int i = 0; i < 48; i += 3) {
            cs[i] = password.charAt(i / 3 * 2);
            char c = salt.charAt(i / 3);
            cs[i + 1] = c;
            cs[i + 2] = password.charAt(i / 3 * 2 + 1);
        }
        return new String(cs);
    }

    /**
     * @Author 魏一鹤
     * @Description 验证明文和加盐后的MD5码是否匹配
     * @Date 23:16 2023/2/7
     **/
    public static boolean verifySaltPassword(String password, String md5) {
        //先从MD5码中取出之前加的盐和加盐后生成的MD5码
        char[] cs1 = new char[32];
        char[] cs2 = new char[16];
        for (int i = 0; i < 48; i += 3) {
            cs1[i / 3 * 2] = md5.charAt(i);
            cs1[i / 3 * 2 + 1] = md5.charAt(i + 2);
            cs2[i / 3] = md5.charAt(i + 1);
        }
        String salt = new String(cs2);
        //比较二者是否相同
        return md5Hex(password + salt).equals(new String(cs1));
    }

    /**
     * @Author 魏一鹤
     * @Description 生成MD5密码
     * @Date 23:16 2023/2/7
     **/
    private static String md5Hex(String src) {
        try {
            MessageDigest md5 = MessageDigest.getInstance("MD5");
            byte[] bs = md5.digest(src.getBytes());
            return new String(new Hex().encode(bs));
        } catch (Exception e) {
            return null;
        }
    }

    public static void main(String args[]) {
        // 原密码
        String password = "123456";
        System.out.println("明文(原生)密码:" + password);
        // MD5加密后的密码
        String MD5Password = MD5(password);
        System.out.println("普通MD5加密密码:" + MD5Password);
        // 获取加盐后的MD5值
        String SaltPassword = generateSaltPassword(password);
        System.out.println("加盐后的MD密码:" + SaltPassword);
        System.out.println("加盐后的密码和原生密码是否是同一字符串:" + verifySaltPassword(password, SaltPassword));
    }

}


测试盐加密强度

这样我们就可以简单的测试下,这传说中的盐是否真的这么厉害,还是刚才的套路,我们定义一个明文为123456的密码。然后再对生成的MD5密码进行加盐处理,分别进行破解,以及对比加盐后的密码和初始密码是否相同。

在这里插入图片描述

拿着MD5的密码进行破解,不用想,基本就是一碰就碎

在这里插入图片描述

然后试试加了盐之后的把,你会发现它破解不了。

在这里插入图片描述

有了这些的基础后,我们就可以对用户注册和登录分别进行加盐加密,以及破解密码对比是否一致了

注册加密

其实很简单,再原有的密码上进行加密即可:

在这里插入图片描述


	@PostMapping(value = "/save")
    public Result save(@RequestBody User user) {
        return userService.saveUser(user);
    }
  
	@Override
    public Result saveUser(User user) {
        // 密码 进行MD5加盐再入库
        user.setPassword(SaltMD5Util.generateSaltPassword(user.getPassword()));
        // 默认头像
        user.setImage("http://localhost:9090/upload/defaultUserImage.jpg");
        if (this.save(user)) {
            return Result.ok(user);
        }
        return Result.fail("保存用户信息失败");
    }

接口简单测试下把,可以看到是以加密的方式入库的:

在这里插入图片描述

登录解密

加密后入库了可不够,还要进行对比呢,随意登录也要处理下:

	@GetMapping(value = "/login")
    public Result login(User user) {
        return userService.login(user);
    }
    
 public Result login(User user) {
        // 账号
        String account = user.getAccount();
        // 密码
        String password = user.getPassword();
        // 如果账号或者密码为空,返回错误信息
        if (StringUtils.isEmpty(account) || StringUtils.isEmpty(password)) {
            return Result.fail("账号和密码都不能为空!");
        }
        // 根据账号和密码查询对应的用户信息
        User loginUser = this.query()
                .eq("account", account)
                .one();
        if (!StringUtils.isEmpty(loginUser)) {
            // 获取该用户在数据库里面的加密过的密码
            String saltPassword = loginUser.getPassword();
            // 输入的密码和加密后的密码进行比较
            boolean passwordFlag = SaltMD5Util.verifySaltPassword(password, saltPassword);
            // 如果根据账号查询和校验加密密码失败,则返回错误信息
            if (StringUtils.isEmpty(loginUser) || !passwordFlag) {
                return Result.fail("登录失败,账号或者密码错误!");
            }
            // 如果账号状态被禁用了
            if (loginUser.getStatus().equals(ACCOUNT_DISABLE.getCode())) {
                return Result.fail("登录失败,该账号已被引用,请联系管理员!", loginUser);
            }
            // 存在的话返回查询到的用户信息
            return Result.ok(loginUser);
        }
        return Result.fail("登录失败,账号或者密码错误!");
    }

我们还以刚才注册的用户为例进行登录,可以看到虽然库里是加密后的密码,我们输入的是明文,但是一样可以匹配上的:

在这里插入图片描述

总结

加密真的很重要,重要的信息千万不能以明文保存!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/362691.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】内存管理知识

&#x1f499;作者&#xff1a;阿润菜菜 &#x1f4d6;专栏&#xff1a;C 本文目录 C/C内存区域分布 对比C语言内存管理的方式 C内存管理的方式 operator new与operator delete函数&#xff08;new和delete实现的底层调用&#xff09; new和delete的实现原理 malloc/free…

行为型设计模式之中介者模式

中介者模式 中介者模式又称为调解者模式或调停者模式&#xff0c;属于行为型模式。它用一个中介对象封装系列的对象交互&#xff0c;中介者使各对象不需要显示地相互作用&#xff0c;从而使其耦合松散&#xff0c;而且可以独立地改变它们之间的交互。 中介者模式包装了一系列对…

「TCG 规范解读」第11章 TPM工作组 TCG算法注册表

可信计算组织&#xff08;Ttrusted Computing Group,TCG&#xff09;是一个非盈利的工业标准组织&#xff0c;它的宗旨是加强在相异计算机平台上的计算环境的安全性。TCG于2003年春成立&#xff0c;并采纳了由可信计算平台联盟&#xff08;the Trusted Computing Platform Alli…

allure简介

allure介绍allure是一个轻量级&#xff0c;灵活的&#xff0c;支持多语言的测试报告工具多平台的&#xff0c;奢华的report框架可以为dev/qa提供详尽的测试报告、测试步骤、log也可以为管理层提供high level统计报告java语言开发的&#xff0c;支持pytest,javaScript,PHP等可以…

springcloud入门+组件使用

代码gitee地址&#xff1a;https://gitee.com/bing520/springcloud 集群 cluster&#xff1a; 同一中软件服务的多个服务节点共同为系统提供服务过程&#xff0c;称之为软件服务集群。 分布式 distribute&#xff1a; 不同软件集群共同为一个系统提供服务&#xff0c;这个系统…

图解LeetCode——剑指 Offer 48. 最长不含重复字符的子字符串

一、题目 请从字符串中找出一个最长的不包含重复字符的子字符串&#xff0c;计算该最长子字符串的长度。 二、示例 2.1> 示例 1: 【输入】 "abcabcbb" 【输出】 3 【解释】 因为无重复字符的最长子串是 "abc"&#xff0c;所以其长度为 3。 2.2> 示…

深入浅出深度学习Pytroch

本文将以通俗易懂的方式&#xff0c;深入浅出地为您揭开深度学习模型构建与训练的面纱&#xff1a; 深度学习数据data模型model损失函数loss优化optimizer可视化visualizer深度学习 数据data 模型model 损失函数loss 优化optimizer 可视化visualizer深度学习数据data模型m…

IP-GUARD离线的客户端如何更新策略?

在控制台上对指定客户端设置好策略后,在计算机树中找到该客户端右键-“策略导出”,导出相应的ipz格式的文件拿到离线的客户端上,客户端运行PolicyImportTool.exe工具,把ipz策略文件导入即可。

软件测试学习什么?好就业么

软件测试需要学习测试环境、网络环境、windows环境、数据库管理、编程技巧&#xff08;java编程设计&#xff0c;脚本语言&#xff0c;设计工具&#xff0c;XML编程、软件测试技术&#xff0c;测试理论&#xff0c;方法&#xff0c;流程&#xff0c;文档写作&#xff0c;测试工…

Blazor入门100天 : 身份验证和授权 (5) - 本地化资源

目录 建立默认带身份验证 Blazor 程序角色/组件/特性/过程逻辑DB 改 Sqlite将自定义字段添加到用户表脚手架拉取IDS文件,本地化资源freesql 生成实体类,freesql 管理ids数据表初始化 Roles,freesql 外键 > 导航属性完善 freesql 和 bb 特性 本节源码 https://github.com/…

FreeRTOS入门(01):基础说明与使用演示

文章目录目的基础说明系统移植基础使用演示数据类型和命名风格总结碎碎念目的 FreeRTOS是一个现在非常流行的实时操作系统&#xff08;Real Time Operating System&#xff09;。本文将介绍FreeRTOS入门使用相关内容&#xff0c;这篇是第一篇&#xff0c;主要介绍基础背景方面…

追梦之旅【数据结构篇】——详解C语言动态实现带头结点的双向循环链表结构

详解C语言动态实现带头结点的双向循环链表结构~&#x1f60e;前言&#x1f64c;预备小知识&#x1f49e;链表的概念及结构&#x1f64c;预备小知识&#x1f49e;链表的概念及结构&#x1f64c;带头结点的双向循环链表结构&#x1f64c;整体实现内容分析&#x1f49e;1.头文件编…

openpose在win下环境配置

1.下载OpenPose库 以下二选一进行下载源码 (1)git进行下载 打开GitHub Desktop或者Powershell git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose cd openpose/ git submodule update --init --recursive --remote(2)在github上手动下载 由于下载环境问…

SpringCloud Alibaba 之Nacos集群部署-高可用保证

文章目录Nacos集群部署Linux部署docker部署&#xff08;参考待验证&#xff09;Nacos 集群的工作原理Nacos 集群中 Leader 节点是如何产生的Nacos 节点间的数据同步过程官方推荐用户把所有服务列表放到一个vip下面&#xff0c;然后挂到一个域名下面。http://nacos.com:port/ope…

go进阶(1) -深入理解goroutine并发运行机制

并发指的是同时进行多个任务的程序&#xff0c;Web处理请求&#xff0c;读写处理操作&#xff0c;I/O操作都可以充分利用并发增长处理速度&#xff0c;随着网络的普及&#xff0c;并发操作逐渐不可或缺 一、goroutine简述 在Golang中一个goroutines就是一个执行单元&#xff…

活动报名丨亚马逊科学家杨靖锋:复现和使用GPT3/ChatGPT的想法

2023年2月23日&#xff08;星期四&#xff09;11:00-12:00&#xff0c;由智源社区主办的「智源LIVE 第30期丨亚马逊科学家杨靖锋讲解『一些关于复现和使用GPT3/ChatGPT的想法』将在线举办&#xff0c;敬请期待。杨靖锋杨靖锋是来自亚马逊的科学家。他的研究主要集中在自然语言处…

ESP32设备驱动-深度休眠与唤醒

深度休眠与唤醒 文章目录 深度休眠与唤醒1、ESP32的休眠模式介绍1.1 ESP32的休眠模式1.2 RTC_GPIO1.3 唤醒源1.4 唤醒流程2、软件准备3、硬件准备4、定时器唤醒5、触摸唤醒6、外部中断唤醒6.1 外部中断ext0唤醒6.2 外部中断ext1唤醒6.3 多GPIO唤醒本文将详细在Arduino IDE中如何…

Spring MVC常用功能及注解

目录 一、什么是Spring MVC 1.1 Spring MVC定义 1.2 MVC定义 1.3 MVC和Spring MVC的关系 1.4 Spring MVC的作用 二、Spring MVC的使用 2.1 Spring MVC的创建和连接 2.1.1 RequestMapping注解 2.1.2 GetMapping注解 2.1.3 PostMapping注解 2.2 获取参数 2.2.1 获取单…

unbound部署DNS

dns的主要作用是将域名解析为ip地址然后在进行访问 安装配置dns准备3台服务器&#xff08;地址都要设置为静态的以便自己配置dns&#xff09;192.168.92.1 用户ip地址&#xff08;windows&#xff09; 192.168.92.132 dns服务器地址 192.168.92.133 web服务器地址 dns服务器 …

网络编程之TCP 网络应用程序开发流程

TCP 网络应用程序开发流程学习目标能够知道TCP客户端程序的开发流程1. TCP 网络应用程序开发流程的介绍TCP 网络应用程序开发分为:TCP 客户端程序开发TCP 服务端程序开发说明:客户端程序是指运行在用户设备上的程序 服务端程序是指运行在服务器设备上的程序&#xff0c;专门为客…