目录
员工的重要性
图像渲染
岛屿的周长
被围绕的区域
岛屿数量
深度优先搜索(Depth First Search):深度优先搜索属于图算法的一种,其过程主要是对每一个可能的分支路径深入到不能再深入到为止,而且每个节点只能访问一次。深度优先搜索本质上就是暴力搜索,遍历了所有可能的情况,必然能得到解。DFS搜索的流程是一个树的形式,每次一条路走到黑。
深度优先搜索的关键是解决“当下该如何做”,下一步的做法和当下的做法是一致的。“当下如何做”一般是尝试每一种可能,用for循环遍历对于每一种可能确定之后,继续走下一步,当前的剩余可能等到从下一步回退之后再处理。据此可以抽象出深度优先搜索的模型
dfs(当前这一步的处理逻辑) {
1.判断边界,是否已经一条道走到黑:回退
2.尝试当下的每一种可能
3.确定一种可能之后,继续下一步dfs(下一步)
}
员工的重要性
题目链接:leetcode-690.员工的重要性
示例
输入:[[1, 5, [2, 3]], [2, 3, []], [3, 3, []]], 1
输出:11
描述:员工1自身的重要度是 5,他有两个直系下属 2 和 3 ,而且 2 和 3 的重要度均为 3 。因此员工 1 的总重要度是 5 + 3 + 3 = 11 。
题目分析:
根据题意,可以根据给定的员工id找到员工,从该员工开始遍历,对于每个员工,将其重要性相加,然后再对该员工的每个下属进行遍历,直到所有下属遍历完毕,此时的总和就是给定id的员工及他所有下属的重要度之和。由于每个员工的编号都不同,可以使用哈希表存储员工编号和对应员工,通过员工编号可以找到对应员工
class Solution {
public int getImportance(List<Employee> employees, int id) {
if (employees.isEmpty()) {
return 0;
}
Map<Integer, Employee> info = new HashMap<>();
for (Employee e : employees) {
info.put(e.id, e);
}
return dfs(info, id);
}
private int dfs(Map<Integer, Employee> info, int id) {
Employee curE = info.get(id);
int sumE = curE.importance;
for (int curId : curE.subordinates) {
sumE += dfs(info, curId);
}
return sumE;
}
}
图像渲染
题目链接:leetcode-773.图像渲染
示例
输入:image = [[1,1,1],[1,1,0],[1,0,1]],sr = 1, sc = 1, newColor = 2
输出:[[2,2,2],[2,2,0],[2,0,1]]
题目分析:
本题的意思是给定一个二维数组表示的图画,并给定一个初始位置和修改后的颜色数字,从初始位置开始,遍历它的上下左右,如果值与初始位置的值相等,就进行修改,一直到遍历完所有符合条件的结点为止.
class Solution {
int[][] nextPosition = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
public int[][] floodFill(int[][] image, int sr, int sc, int color) {
if (image == null || image.length == 0) {
return new int[0][0];
}
int flag = image[sr][sc];
if (flag != color) {
dfs(image, sr, sc, color, flag);
}
// dfs(image, sr, sc, color, flag);
return image;
}
private void dfs(int[][] image, int sr, int sc, int color, int flag) {
if (image[sr][sc] == flag) {
image[sr][sc] = color;
for (int i = 0; i < 4; i++) {
int newSr = sr + nextPosition[i][0];
int newSc = sc + nextPosition[i][1];
if (newSr >= 0 && newSr < image.length && newSc >= 0 && newSc < image[0].length) {
dfs(image, newSr, newSc, color, flag);
}
}
}
}
}
岛屿的周长
题目链接:leetcode-463.岛屿的周长
示例
输入:grid = [[0,1,0,0],[1,1,1,0],[0,1,0,0],[1,1,0,0]]
输出:16
题目分析
根据题意,每次遍历到陆地时,先判断其是否处于边界,如果处于上下左右四个边界,则周长+1,如果不处于边界,就判断其上下左右是否为海洋,如果为海洋,则周长+1,如果为陆地,则不进行操作,每遍历一个陆地后,将其标记出来,下次如果又到了这块陆地,就返回。
class Solution {
int[][] nextPosition = { {1, 0}, {-1, 0}, {0, 1}, {0, -1} };
int ret;
public int islandPerimeter(int[][] grid) {
if (grid == null || grid.length == 0) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
int[][] book = new int[m][n];
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 1) {
dfs(grid, book, i, j, m, n);
break;
}
}
}
return ret;
}
private void dfs(int[][] grid, int[][] book, int row, int col, int m, int n) {
if (row < 0 || row >= m || col < 0 || col >= n || grid[row][col] == 0) {
ret++;
return ;
}
if (book[row][col] == 1) {
return ;
}
book[row][col] = 1;
for (int i = 0; i < 4; i++) {
int newRow = row + nextPosition[i][0];
int newCol = col + nextPosition[i][1];
dfs(grid, book, newRow, newCol, m, n);
}
}
}
被围绕的区域
题目链接:leetcode-130.被围绕的区域
例如
输入:board = [["X","X","X","X"],["X","O","O","X"],["X","X","O","X"],["X","O","X","X"]]
输出:[["X","X","X","X"],["X","X","X","X"],["X","X","X","X"],["X","O","X","X"]]
题目分析:
由题意分析可知,只要其他的O与边界上的O相连,就不能被更换,因此,从四个边界的O符号开始,每次判断它的上下左右,只要与边界相连,就将其暂时设为*,接下来从这个*开始,继续寻找它的上下左右,直至到边界值为止,这里的边界值即超越矩阵范围或者遇到X为止.
注意:
if (board[x][y] == '*') {
return ;
}
该判断语句一定要加上,否则当遇到*时,就会一直陷入死循环
class Solution {
public void solve(char[][] board) {
if (board == null || board.length == 0) {
return ;
}
int m = board.length;
int n = board[0].length;
for (int i = 0; i < m; i++) {
if (board[i][0] == 'O') {
dfs(board, i, 0);
}
if (board[i][n - 1] == 'O') {
dfs(board, i, n - 1);
}
}
for (int i = 1; i < n - 1; i++) {
if (board[0][i] == 'O') {
dfs(board, 0, i);
}
if (board[m - 1][i] == 'O') {
dfs(board, m - 1, i);
}
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (board[i][j] == 'O') {
board[i][j] = 'X';
}
if (board[i][j] == '*') {
board[i][j] = 'O';
}
}
}
}
private void dfs(char[][] board, int x, int y) {
if (x < 0 || y < 0 || x >= board.length || y >= board[0].length || board[x][y] == 'X') {
return ;
}
if (board[x][y] == '*') {
return ;
}
board[x][y] = '*';
dfs(board, x + 1, y);
dfs(board, x - 1, y);
dfs(board, x, y + 1);
dfs(board, x, y - 1);
}
}
岛屿数量
题目链接:leetcode-200.岛屿数量
例如
输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]输出: 1
题目分析:
对于该题,从任意一个陆地出发,一直遍历它的上下左右,直至四周都是边界或海洋为止,对于每个遍历到过的陆地都将其标记出来,遍历整个二维数组,将每一个未标记过的陆地都作为起点遍历一遍。每次结束之后岛屿数量+1,直至所有陆地都被标记过后为止
代码
class Solution {
public int numIslands(char[][] grid) {
if (grid == null || grid[0].length == 0) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
int[][] book = new int[m][n];
int ret = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == '1' && book[i][j] == 0) {
dfs(grid, book, i, j);
ret++;
}
}
}
return ret;
}
private void dfs(char[][] grid, int[][] book, int x, int y) {
if (x < 0 || y < 0 || x >= grid.length || y >= grid[0].length || grid[x][y] == '0') {
return ;
}
if (book[x][y] == 1) {
return ;
}
book[x][y] = 1;
dfs(grid, book, x + 1, y);
dfs(grid, book, x - 1, y);
dfs(grid, book, x, y + 1);
dfs(grid, book, x, y - 1);
}
}