RSA加密算法Python实现

news2025/8/11 6:25:40

RSA加密算法Python实现

  • 1.RSA算法简介
  • 2.RSA算法涉及的数学知识
      • 2.1互素
      • 2.2 欧拉定理
      • 2.3求模逆元
      • 2.4 取模运算
      • 2.5 最大公因数
      • 2.6 最小公倍数
      • 2.7 欧几里得算法
      • 2.8 扩展欧几里得算法
  • 3.RSA算法数学实现
      • 3.1理论
      • 3.2实践
  • 4.RSA算法代码实现
      • 4.1RSA算法代码实现1
      • 4.1RSA算法代码实现2


1.RSA算法简介

1977年,三位数学家 Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法.RSA算法的特征如下:

  1. RSA算法是非对称加密算法,及算法的加密密钥与解密密钥不同
  2. RAS是基于大数分解问题实现的算法,
  3. RSA算法的密钥长度一般为1024位到2048位之间,密钥很长,加密较慢
  4. RSA算法一般用在数字签名比较多
  5. RSA还是分组密码算法,需要对明文进行一组一组加密

2.RSA算法涉及的数学知识

2.1互素

两个正整数,除了1之外没有其他公因子,我们称这两个数是互素的,(就是两个数除一外没有公约数,就是互素),如下是判断两个数是否互素的代码实现:

def prime(a, b):
    if a > b:
        mid = a
        a = b
        b = mid
    mid = b % a
    while mid:
        b = a
        a = mid
        mid = b % a
    if a == 1:
        print('俩数互素')
    else:
        print('俩数不互素')


if __name__ == '__main__':
    prime(8, 3)

2.2 欧拉定理

如果两个正整数a和n互素,则n的欧拉函数φ(n)可以让下面的式子成立

在这里插入图片描述

其中a上面的表达式为欧拉函数,欧拉函数的计算方法为,比如计算n的欧拉函数,就是找从1到n-1和n互素元素的个数,其中质数的欧拉函数值为n-1,判断一个数的欧拉函数值方法如下:

def prime(a, b):
    if a > b:
        mid = a
        a = b
        b = mid

    mid = b % a
    while mid:
        b = a
        a = mid
        mid = b % a
    if a == 1:
        return True
    else:
        return False


def oula(n):
    total = 0
    for i in range(1, n):
        if prime(i, n):
            total = total + 1
    return total


if __name__ == '__main__':
    print(oula(8))

2.3求模逆元

求模逆元就是贝祖等式,就是d*e = 1 (mod n),e,和 n知道了,求d

def invmod(e, m):
    """
    求模逆元:知道x * e + y * m = g
    :param e:
    :param m:
    :return:
    """
    g, d, y = exgcd(e, m)
    assert g == 1
    if d < 0:
        d += m
    return d

2.4 取模运算

取模运算就是取余数运算

model = a % b

2.5 最大公因数

求最大公因数一般使用欧几里得算法,欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。

  • 方法1
def gcd(a, b):
    """
    求最大公约数
    :param a:
    :param b:
    :return:
    """
    if a > b:
        mid = a
        a = b
        b = mid
    y = b % a
    while y:
        b = a
        a = y
        y = b % a
    return b
  • 方法二
def gcd(a, b):
    """
    求最大公约数
    :param a:
    :param b:
    :return:
    """
    while b:
        a, b = b, a % b
    return a

2.6 最小公倍数

最小公倍数是再最大公因数的基础上使用的,两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。整数a,b的最小公倍数记为[a,b],同样的,a,b,c的最小公倍数记为[a,b,c],多个整数的最小公倍数也有同样的记号。 与最小公倍数相对应的概念是最大公约数,a,b的最大公约数记为(a,b)。关于最小公倍数与最大公约数,我们有这样的定理:(a,b)x[a,b]=ab(a,b均为整数)。

  • 方法1
def lcm(a, b):
    """
    求最大公倍数
    :param a:
    :param b:
    :return:
    """
    divisor = gcd(a, b)
    multiple = (a * b) / divisor
    return multiple
  • 方法二
def lcm(a, b):
    """
    求最大公倍数
    :param a:
    :param b:
    :return:
    """
    return a // gcd(a, b) * b

2.7 欧几里得算法

欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。,上面说了

2.8 扩展欧几里得算法

求的a和b的最大公因数,求,x,y使得x * a + y * b= g(a,b)

def exgcd(a, b):
    # a:a和b的最大公因数
    old_s:
    old_t:
    old_s * a + old_t * b = a
    """
    old_s, s = 1, 0
    old_t, t = 0, 1
    while b:
        q = a // b
        s, old_s = old_s - q * s, s
        t, old_t = old_t - q * t, t
        a, b = b, a % b
    return a, old_s, old_t

3.RSA算法数学实现

3.1理论

  1. 随意选择两个大的质数p和q,p不等于q,计算N = pq.
  2. 根据欧拉函数,求得φ(N)=φ§φ(q)=(p-1)(q-1)。这是一个公式如果N = pq,那么φ(N)=φ(p)φ(q),又因为p和q都是素数,φ(p) = p-1,所以φ(N)=φ(p)φ(q)=(p-1)(q-1)
  3. 选择一个数e,使e大于1,并且e小于φ(N),找一个数d,使得ed≡1(mod φ(N)),(e,n)为公钥,(d,e)为私钥
  4. 加密:m^e ≡ c (mod n),其中c为密文,解密:c^d ≡ m (mod n)

加解密图解如下:

在这里插入图片描述

3.2实践

首先找两个数,及p和q,p和q一般非常大,这里方便计算,取比较小的值,假设:p = 17,q = 19(p,q互素)

  1. n = p * q = 323
  2. φ(n) = (p-1) * (q-1) = 144
  3. 随机取一数e,使1 < e < φ(n)并且gcd(e,φ(n)) =1,e=5合适(还有很多数都合适,这里只取一个数)
  4. 取一数d,使得ed≡1(mod φ(n)),取d为29,所以公钥为(e,n),私钥为(d,n)
  5. 加密:假设明文 = 123,则 密文=(123的5次方)mod 323=225
  6. 解密:明文=(225的29次方)mod 323 =123,所以解密后的明文为123。

4.RSA算法代码实现

4.1RSA算法代码实现1

# 求两个数字的最大公约数(欧几里得算法)
def gcd(a, b):
   if b == 0:
       return a
   else:
       return gcd(b, a % b)

# 获取密钥
def get_key(p, q):
   n = p * q
   fyn = (p - 1) * (q - 1)
   e = 2
   while gcd(e, fyn) != 1:
       e = e + 1
   d = 2
   while (e*d) % fyn != 1:
       d = d + 1
   return (n, e), (n, d)


# 加密
def encryption(x, pubkey):
   n = pubkey[0]
   e = pubkey[1]
   y = x ** e % n   # 加密
   return y


# 解密
def decryption(y, prikey):
   n = prikey[0]
   d = prikey[1]
   x = y ** d % n      # 解密
   return x


if __name__ == '__main__':
   p = int(input("请给定第一个质数p的值:"))
   q = int(input("请给定第二个质数q的值:"))
   x = int(input("请给定要加密的消息x的值:"))
   # 生成公钥私钥
   pubkey, prikey = get_key(p, q)
   print("加密前的消息是:", x)
   y = encryption(x, pubkey)
   print("加密后的消息是:", y)
   after_x = decryption(y, prikey)
   print("解密后的消息是:", after_x)

以上算法只能够实现整数加密,这个算法就是演示了RSA算法的原理

在这里插入图片描述

4.1RSA算法代码实现2

from random import randrange
import math


def prime(n):
   """
   判断一个数是不是素数
   :param n:
   :return: BOOL
   """
   mid = math.sqrt(n)
   mid = math.floor(mid)
   for item in range(2, mid):
       if n % item == 0:
           return False
   return True


def generate_n_bit_odd(n: int):
   """
   生成大数,不确定是不是素数
   :param n:
   :return:大数
   """
   assert n > 1
   return randrange(2 ** (n - 1) + 1, 2 ** n, 2)


first_50_primes = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
                  37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
                  79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
                  131, 137, 139, 149, 151, 157, 163, 167, 173, 179,
                  181, 191, 193, 197, 199, 211, 223, 227, 229, 233]


def get_lowlevel_prime(n):
   """
   选择满足不能够整除前50个素数的大数,没找到就一直循环
   :param n:
   :return:
   """
   while True:
       c = generate_n_bit_odd(n)
       for divisor in first_50_primes:
           if c % divisor == 0 and divisor ** 2 <= c:
               break
       return c


def miller_rabin_primality_check(n, k=20):
   """
   米勒-拉宾素性检验
   由于假设n是一个素数,n-1=a^s*d,s和d是常量,改变a的值,检测20次
   :param n:
   :param k:
   :return:
   """
   assert n > 3
   if n % 2 == 0:
       return False
   # 找出n-1 = 2^s*d
   s, d = 0, n - 1
   while d % 2 == 0:
       d >>= 1
       s += 1

   for _ in range(k):
       a = randrange(2, n - 1)
       x = pow(a, d, n)

       if x == 1 or x == n - 1:
           continue

       for _ in range(s):
           x = pow(x, 2, n)
           if x == n - 1:
               break
       else:
           return False
   return True


def get_random_prime(num_bits):
   """
   获取大素数
   :param num_bits:
   :return:
   """
   while True:
       pp = get_lowlevel_prime(num_bits)
       if miller_rabin_primality_check(pp):
           return pp


def gcd(a, b):
   """
   求最大公约数
   :param a:
   :param b:
   :return:
   """
   while b:
       a, b = b, a % b
   return a


def lcm(a, b):
   """
   求最大公倍数
   :param a:
   :param b:
   :return:
   """
   # divisor = gcd(a, b)
   # multiple = (a * b) / divisor
   # return multiple
   return a // gcd(a, b) * b



def exgcd(a, b):
   """
   扩展欧几里得算法
   :param a:
   :param b:
   :return:
   a:a和b的最大公因数
   old_s:
   old_t:
   old_s * a + old_t * b = a
   """
   old_s, s = 1, 0
   old_t, t = 0, 1
   while b:
       q = a // b
       s, old_s = old_s - q * s, s
       t, old_t = old_t - q * t, t
       a, b = b, a % b
   return a, old_s, old_t


def invmod(e, m):
   """
   求模逆元:知道x * e + y * m = g
   :param e:
   :param m:
   :return:
   """
   g, d, y = exgcd(e, m)
   assert g == 1
   if d < 0:
       d += m
   return d


def uint_from_bytes(xbytes: bytes) -> int:
   """
   比特转换位整数
   :param xbytes:
   :return:
   """
   return int.from_bytes(xbytes, 'big')


def uint_to_bytes(x: int) -> bytes:
   """
   整数转换成比特的时候,一个整数对应32位比特数
   :param x:
   :return:
   """
   if x == 0:
       return bytes(1)
   return x.to_bytes((x.bit_length() + 7) // 8, 'big')  #做到尽量不补零


RSA_DEFAULT_EXPONENT = 65537
RSA_DEFAULT_MODULUS_LEN = 2048

class RSA:
   """
   RSA算法(self.n, self.e)加密密钥
   (self.n, self.d)解密密钥
   """
   def __init__(self, key_length=RSA_DEFAULT_MODULUS_LEN,
                exponent=RSA_DEFAULT_EXPONENT):
       self.e = exponent
       t = 0
       p = q = 2
       # 找出一个e使1<e<(p-1)*(q-1)
       while gcd(self.e, t) != 1:
           p = get_random_prime(key_length // 2)
           q = get_random_prime(key_length // 2)
           t = lcm(p - 1, q - 1)

       self.n = p * q
       self.d = invmod(self.e, t)
   # 加密和解密使比特和整数之间的加解密

   def encrypt(self, binary_data: bytes):
       int_data = uint_from_bytes(binary_data)
       return pow(int_data, self.e, self.n)

   def decrypt(self, encrypted_int_data: int):
       int_data = pow(encrypted_int_data, self.d, self.n)
       return uint_to_bytes(int_data)


if __name__ == '__main__':
   alice = RSA(512, 3)
   msg = b'Textbook RSA in Python'
   ctxt = alice.encrypt(msg)
   m = alice.decrypt(ctxt)
   print(m)
   print(ctxt)

如下是结果运行图:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/33877.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STP、RSTP、MSTP

STP、RSTP、MSTP的配置 本篇介绍STP、RSTP、MSTP的配置和常用的管理命令。 STP/RSTP/MSTP简介 以太网中为了进行链路备份&#xff0c;提高网络可靠性&#xff0c;通常会使用冗余链路&#xff0c;但是这也带来了网络环路的问题。网络环路会引发广播风暴和MAC地址表振荡等问题…

连续仨月霸占牛客榜首,京东 T8 呕心沥血神作:700 页 JVM 虚拟机实战手册

虚拟机是一种抽象化的计算机&#xff0c;通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java 虚拟机有自己完善的硬体架构&#xff0c;如处理器、堆栈、寄存器等&#xff0c;还具有相应的指令系统。JVM 屏蔽了与具体操作系统平台相关的信息&#xff0c;使得 Java 程序只…

基于结构应力方法的焊接结构疲劳评估及实例分析(下篇)

作者 | 裴宪军 &#xff0c;仿真秀专栏作者 一、写在文前 焊接技术作为现代制造业中的支柱技术之一&#xff0c;是制造强国的关键保障。由于其整体性强、轻量化、经济性好等优点&#xff0c;焊接结构被广泛应用于轨道交通、航空航天&#xff0c;船舶、重型装备等领域&#xf…

LinkedIn领英开发客户方法大全(篇一)

一、准备工作 &#xff08;绝对不能小看准备工作&#xff01;&#xff01;&#xff01;&#xff01;所以我写的很详细&#xff01;&#xff01;&#xff01;&#xff09; 1.建议大家使用网页版的领英开发客户&#xff0c;并且界面语言要切换为英文&#xff01;&#xff01; 领…

你听说过LabVIEW吗?

LabVIEW是美国国家仪器公司NI的图形化的编程语言&#xff0c;LabVIEW的全称是Laboratory Virtual Instrument Engineering Workbench&#xff0c;平时我们常见的Python、C/C、Java编程语言虽然也分编译型语言和解释型语言、底层语言和高级语言等&#xff0c;但基本都是文字形式…

[附源码]java毕业设计疫情状态下病房管理平台

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

Spring 如何解决循环依赖

1.什么是循环依赖&#xff1f; 循环依赖就是循环引用&#xff0c;就是两个或多个Bean相互之间的持有对方&#xff0c;比如A引用B&#xff0c;B引用C&#xff0c;C引用A&#xff0c;则它们最终反映为一个环。 我们这里以两个类A和B为例进行讲解&#xff0c;如下是A和B的声明&a…

MCE | 丙型肝炎病毒的终结之路

Harvey J. Alter 对输血相关性肝炎的系统研究表明&#xff0c;一种未知病毒是慢性肝炎的常见病因&#xff1b;Michael Houghton 使用了一种未经验证的策略&#xff0c;分离了新病毒丙型肝炎病毒 (Hepatitis C virus) 的基因组&#xff1b;Charles M. Rice 提供了最终的证据&…

C语言源代码系列-管理系统之会员计费系统

往期文章分享点击跳转>《导航贴》- Unity手册&#xff0c;系统实战学习点击跳转>《导航贴》- Android手册&#xff0c;重温移动开发 &#x1f449;关于作者 众所周知&#xff0c;人生是一个漫长的流程&#xff0c;不断克服困难&#xff0c;不断反思前进的过程。在这个过…

【附源码】计算机毕业设计JAVA疫情期间物资分派管理系统

【附源码】计算机毕业设计JAVA疫情期间物资分派管理系统 目运行 环境项配置&#xff1a; Jdk1.8 Tomcat8.5 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; …

FEDformer里面的CZ1d

这里的x是传入的value&#xff0c;是&#xff08;1,24,128,8&#xff09;维度的。 然后&#xff0c;他提取的extra_x的维度是&#xff08;1,8,128,8&#xff09;这个维度的。 然后&#xff0c;下一步&#xff0c;将这两个xcat起来&#xff0c;不知道在干啥。 因为本来的x是&…

赵本山最有钱徒弟,曾经入股宾利投资吴京,如今又盯上歌手腾格尔

有句话叫作&#xff1a;过了山海关&#xff0c;都找赵本山。说明本山大叔在东北影响很大&#xff0c;其实他的徒弟也不弱。赵本山老师作为央视春晚小品王&#xff0c;手下弟子没有三千也有八百&#xff0c;个个都是出来拔萃身怀绝技。 这些人之所以拜本山大叔为师&#xff0c;无…

[附源码]java毕业设计医药管理系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

Teracloud+GoodSync

TeracloudGoodSync 前言 Teracloud除了存文献外&#xff0c;它还是个云盘&#xff0c;可以搭配各种同步软件使用&#xff0c;之前在博客多终端云同步文献管理&#xff1a;ZoteroTeraCloud&#xff08;WindowsAndroid&#xff09;里提到用同步软件搭配Teracloud使用&#xff0…

使用SSM搭建图书商城管理系统(完整过程介绍、售后服务哈哈哈)

经过几位下载同学的反应、大部分运行未成功的原因有以下几点、特此记录以下。代码是完全没有问题的 项目地址&#xff1a;https://download.csdn.net/download/weixin_43304253/85811914 代码运行环境&#xff1a; tomcat&#xff1a;8 IDEA&#xff1a;2020 JDK&#xff1a;1…

vue.js毕业设计,基于vue.js前后端分离在线考试系统设计与实现(H5移动项目)

功能介绍 用户首次登陆系统需要注册一个用户或直接使用微信作为账号&#xff0c;用户在登录平台后&#xff0c;可以进行平台的操作。主要模块包括以下几点&#xff1a; 注册登录功能&#xff1a;注册普通账号登录&#xff1b;也可以直接使用微信登录&#xff1b;登录后可以修改…

【MySQL进阶】单表访问方法

【MySQL进阶】单表访问方法 文章目录【MySQL进阶】单表访问方法一&#xff1a;访问方法&#xff08;access method&#xff09;1&#xff1a;const2&#xff1a;ref3&#xff1a;ref_or_null4&#xff1a;range5&#xff1a;index6&#xff1a;all二&#xff1a;注意事项1&…

黑马点评--Redis消息队列

Redis消息队列 Redis消息队列实现异步秒杀 消息队列&#xff08;Message Queue&#xff09;&#xff0c;字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色&#xff1a; 消息队列&#xff1a;存储和管理消息&#xff0c;也被称为消息代理&#xff08;Message Br…

这就是你了解的指针吗?

小叮当的任意门——指针1. 指针是什么&#xff1f;2. 指针和指针类型1. 指针-整数2. 指针的解引用3. 野指针1. 野指针的成因未初始指针越界访问指针指向的空间释放2. 如何规避野指针4. 指针运算指针减指针指针的关系运算5. 二级指针6. 指针数组1. 指针是什么&#xff1f; 在讲指…

内核的架构 --- 宏内核与微内核

宏内核 宏内核就是把进程管理代码、 内存管理代码、 设备管理代码、 文件管理代码、 各种设备驱动程序代码以及其 他功能模块的代码经过编译&#xff0c; 最后链接在一起&#xff0c; 形成一个大的可执行程序。 这个大程序里有实现支持这些功能的所有代码&#xff0c; 向用户应…