Python_数据容器_元组tuple

news2025/8/12 4:05:54

一、元组tuple定义

为什么需要元组

列表是可以修改的,如果想要传递的信息不被篡改,列表就不适合了

元组和列表一样,都是可以封装多个不同类型的元素在内

最大的不同点在于:

元祖一旦定义完成,就不可修改

所以,当我们需要在程序内封装数据,但不希望封装的数据被篡改,元组就非常合适了

元组的定义: 定义元组使用小括号,且用逗号隔开,数据可以是不同类型。

注意:元组只有一个元素,这个数据后面要加逗号;否则类型是str 而不是tuple

元组也支持嵌套,元组也可以利用下表索引取出元素 

# 定义元祖

t1 = (1,'jerk',True)

t2 = ()

t3 =tuple()

print(f"t1的类型是:{type(t1)},内容是:{t1}")

print(f"t2的类型是:{type(t2)},内容是:{t2}")

print(f"t3的类型是:{type(t3)},内容是:{t3}")

# 定义单个元素的元素 后面带逗号,否则不是tuple类型

t4 = ('one',)

print(f"t4的类型是:{type(t4)},内容是:{t4}")

# 元组的嵌套

t5 = (1,2,3,t4,(6,7))

print(f"t5的类型是:{type(t5)},内容是:{t5}")

# 元组也可以利用下表索引取出元素 取出 t5中的7

element = t5[4][1]

print(f"从嵌套t5中取出的数据是:{element}")

二、元组的相关操作

# 元组的遍历:while

index = 0

while index < len(t8):

    element = t8[index]

    print(f"通过while遍历的元组有元素:{element}")

    index += 1



# 元组的遍历:for

for element1 in t8:

    print(f"通过for遍历的元组有元素:{element1}")

注意事项:

  • 不可以修改元祖的内容,否则会直接报错

  • 可以修改元组内的list的内容(修改元素、增加、删除、反转等)

总结元组特点:

  • 可以容纳多个数据

  • 可以容纳不同类型的数据(嵌套)

  • 数据是有序存储的(下标索引)

  • 允许重复数据存在

  • 不允许修改元组(增删改),但是可以修改嵌套在其中的list的内容

  • 支持while/for循环

多数特性和list一致,不同点在于不可修改的特性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/33595.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot中使用JDBC

JDBC基础使用&#xff1a; JDBC基础使用_做测试的喵酱的博客-CSDN博客 一、SpringBoot使用JDBC&#xff0c;依赖 依赖&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-jdbc</artifactId&…

linux zookeeper kafka_2.12-2.2.0 集群

文章目录一、zookeeper服务搭建1. 下载2. 解压3. 创建目录4. 调整配置5. 配置myid6. 开放防火墙7.启动验证zk二、kafka集群搭建2.1. 下载软件2.2. 解压2.3. 配置2.5. 启动kafka三、测试验证3.1. 创建一个主题3.2. 发送消息3.3. 消费消息预先准备&#xff1a;上传软件至服务器19…

使用Avalonia跨Linux平台

Avalonia&#xff0c;读&#xff1a;阿瓦隆尼亚 这里的跨平台指的是&#xff0c;使用c#语言开发跨Linux平台。c#在Windows桌面开发中很强&#xff0c;但是在Linux桌面中&#xff0c;不能跨平台&#xff0c;Qt可以在Linux中跨平台&#xff0c;但是那是另外一门语言了。Avalonia…

计算机组成原理4小时速成:计算机运算方法,无符号数和有符号数,定点数和浮点数,移位运算,加减运算,乘法运算,原码,反码,补码

计算机组成原理4小时速成&#xff1a;计算机运算方法&#xff0c;无符号数和有符号数&#xff0c;定点数和浮点数&#xff0c;移位运算&#xff0c;加减运算&#xff0c;乘法运算&#xff0c;原码&#xff0c;反码&#xff0c;补码 2022找工作是学历、能力和运气的超强结合体&…

[激光原理与应用-16]:《激光原理与技术》-2- 光的本质(粒子、波动说、电磁波、量子)

目录 前言&#xff1a;“光” 一、光的微粒说 - 牛顿 二、光的波动说 - 托马斯杨 惠更斯 三、光是电磁波 - 麦克斯韦 四、光的波动说受到的挑战&#xff0c;光的波动说重新唤醒 五、光量子假说 - 爱因斯坦 六、光的理论综合 七、光的重要特性 7.1 光的相干性 7.2 相…

安装ideaIU-2022.1.4报错问题解决办法

原来版本是2020 现在因为要用到JDK17 而IDEA2020支持的JDK只能到14 所以我们现在在下载一个2022 .1.4 这时我们安装好后 会发现如下错误 原因分析&#xff1a; JetBrains 会将各个产品的这些文件也放到这个目录中&#xff0c;而新版本的 IntelliJ IDEA 在安装时遭遇了旧版本…

Web(二)html5基础-文本控制类标签(知识训练和编程训练)

web知识训练_html5_文本控制类标签 第1关_web知识训练_html5_文本控制类标签 -------------------------------------------- web编程训练_html5_文本控制类标签 第1关_html5_网页背景及标题段落标签 编程要求 根据前面的效果图&#xff0c;在右侧编辑器中的Begin - End区域…

10K涨到30K,5年大厂横跳,经验全在这两份Java面试精华总结里了

为了帮助大家跳槽成功多长点薪资&#xff0c;我这边给大家准备了两份面试资料。这两份资料可大有来头&#xff0c;已经帮助五位我认识的人进入大厂。所以说含金量还是很高的。 这两份资料可以让你体验到原有知识从破碎到重建&#xff0c;豁然开朗的过程。5年大厂横跳真实案例加…

数据库事务

1 概述 数据库的事务&#xff08;Transaction&#xff09;是一种机制、一个操作序列&#xff0c;包含了一组数据库操作命令。 事务把所有的命令作为一个整体一起向系统提交或撤销操作请求&#xff0c;即这一组数据库命令要么同时成功&#xff0c;要么同时失败。 事务是一个不可…

前端开发——HTML5新增的客户端校验

1.使用校验属性执行校验 HTML5新增了表单的校验属性,如required、pattern等。 required:定义表单不能为空。属性值是required或者省略.pattern:定义表单满足正则表单式1.required属性 required属性用于不能为空。属性值是required或者省略. 代码如下&#xff1a; <form …

34 - 数组操作符的重载

---- 整理自狄泰软件唐佐林老师课程 1. 问题一 string类对象具备C方式字符串的灵活性吗&#xff1f;还能直接访问单个字符吗&#xff1f; 1.1 字符串类的兼容性 string类最大限度的考虑了C字符串的兼容性可以按照使用C字符串的方式使用string对象 1.2 编程实验&#xff1a…

BUUCTF Reverse/[GWCTF 2019]re3

main函数代码&#xff0c;这里改写了内存空间的属性&#xff0c;还是自解密 void __fastcall __noreturn main(int a1, char **a2, char **a3) {int i; // [rsp8h] [rbp-48h]char s[40]; // [rsp20h] [rbp-30h] BYREFunsigned __int64 v5; // [rsp48h] [rbp-8h]v5 __readfsqwo…

在Thymeleaf中格式化日期

1. 简介 在本文中&#xff0c;我们将介绍在百里香叶模板中格式化日期的方法。我们将使用 Thymeleaf 引擎中提供的特殊#calendars实用程序&#xff0c;该实用程序是为模板上的日期操作而创建的。 2. 使用实用程序类#calendar Thymeleaf带有一个名为#calendars的特殊实用程序类…

万字长文:从实践到原理说透Golang defer

本从以go-1.16版本源码为基础&#xff0c;介绍了defer关键字的使用规则、实现原理和优化路线&#xff0c;最后介绍了几种将近的使用场景。试图对 go defer 关键字应用到实现原理有一个全面的了解。 欢迎关注公众号闲余说 defer 概述 Go 提供关键字defer 处理延迟调用问题。在语…

超详细BootLoader原理分析

【摘要】本文详细地介绍了基于嵌入式系统中的 OS 启动加载程序 ―― BootLoader 的概念、软件设计的主要任务以及结构框架等内容。 在拿到空PCB板之后&#xff0c;硬件工程师首先会测试各主要线路是否通连&#xff08;各焊点是否有空焊、断接或短路的情况&#xff09;&#xff…

黑群辉+腾讯云+frp内网穿透

说明 家里用了移动宽带&#xff08;套餐便宜&#xff09;&#xff0c;结果没有了公网IP&#xff0c;只能想别的办法。 现在网上的方法大概三种 1. 第三方服务器代理&#xff1b; 要花钱&#xff0c;放弃! 2. frp穿透&#xff1b; 需要需要一台有公网IP的云服务器&#xff0…

线代——基础解系 vs 特征向量

基础解系 基础解系的概念是针对方程而言的&#xff1b;齐次线性方程组的解集的最大无关组称为齐次线性方程的基础解系&#xff1b;要求齐次线性方程组的通解&#xff0c;只需求出它的基础解系。 【例】 特征向量 特征向量和特征值满足关系式 AαλαA\alpha \lambda \alpha…

超融合兼顾医疗信创及 IT 云化转型的可行性分析

近期&#xff0c;中央出台财政贴息专项再贷款等“组合拳”政策&#xff0c;重点支持医疗、教育等关键行业的设备更新改造&#xff0c;同时央行将优先审核和支持对国产自主品牌的采购。这一系列动作表明&#xff0c;医疗行业的国产化替代&#xff08;即信息技术应用创新&#xf…

计算机组成原理习题课第一章-2(唐朔飞)

计算机组成原理习题课第一章-2&#xff08;唐朔飞&#xff09; ✨欢迎关注&#x1f5b1;点赞&#x1f380;收藏⭐留言✒ &#x1f52e;本文由京与旧铺原创&#xff0c;csdn首发&#xff01; &#x1f618;系列专栏&#xff1a;java学习 &#x1f4bb;首发时间&#xff1a;&…

DHCP option 43是什么

背景 当AP和AC在同一个网段时&#xff0c;AP会主动发送广播报文&#xff0c;就能直接找到网段内的AC。当AP和AC在不同网段时&#xff0c;广播报文无法跨网段传播&#xff0c;只能在AP上指定AC IP地址&#xff0c;AP才能找到AC进行上线。 如果AP数量只有几个&#xff0c;可以采…