Android 进阶——Framework 核心之Binder 相关预备理论(一)

news2025/10/19 8:05:31

文章大纲

  • 引言
  • 一、进程的内存空间和进程隔离
  • 二、Linux 系统内存的用户空间和内核空间
    • 1、用户空间(User Space)
    • 2、内核空间(Kernel Space)
  • 三、Linux IPC 原理
    • 1、内核态和用户态
    • 2、IPC 步骤
  • 四、内核模块和驱动
  • 五、Binder
    • 1、Binder IPC概述
    • 2、Binder的优势
      • 2.1、Binder 传输性能高
      • 2.2、Binder 安全性好
    • 3、Binder 使用简单

引言

Android OS=Android Runtime+Linux Kernel。在Android系统中每一个应用程序都运行在独立的进程中(确保了某个进程异常而不会影响另一个进程的运行),自然就少不了进程间通信IPC(Internet Process Connection)。那么Android为啥没有采用Linux那么多的像管道(Pipe)、信号(Signal)和跟踪(Trace)、插口(Socket)、报文队列(Message)、共享内存(Share Memory)和信号量(Semaphore)等传统IPC手段,而是自己设计开发一套独特的IPC 手段——Binder IPC呢,接下来系列文章,我们将全面揭开其神秘面纱,第一篇先对Binder 有关的Linux常识进行小结,学习完之后,你会知道为什么要Binder?

本系列文章中,Service指的是提供服务的代码,这些代码最终体现为一个个的接口方法,换言之,Service就是实现一组方法的对象,通常也称为Service组件(为了防止混淆,我用了不严谨的Server组件替代)并非Android 中的四大组件的概念,另外UML类图可能不太严谨,针对源码部分更多的是解读其功能而所有具体的实现代码,仅供参考。

一、进程的内存空间和进程隔离

进程是一个可执行文件的执行体,除了包含指令之外,还有包含了大量的资源,各自拥有独立的虚拟地址空间,即进程空间。在Linux中通过虚拟内存机制为每个进程分配了线性连续的内存空间,再将这虚拟内存空间映射到物理内存空间。这是出于安全的考虑,每个进程的虚拟内存空间都是相对独立的,每个进程只能操作自己的虚拟内存空间,只有操作系统才有权限操作物理内存空间,即所谓的进程隔离,进程隔离保证了每个进程的内存安全。简而言之,为了确保进程安全,Linux通过虚拟内存机制实现了进程隔离。

二、Linux 系统内存的用户空间和内核空间

但是进程之间不可能是一个与世隔离的桃花源,也需要互相通信,于是对内存的操作既要确保安全又要互相通信,
在这里插入图片描述
于是如上图所示, Linux操作系统在逻辑上将虚拟内存分为用户空间(User Space)内核空间(Kernel Space), 以32位操作系统为例,内核空间大小为3GB(是一整块的),用户空间大小为1GB (许多独立的小块)。

1、用户空间(User Space)

可以理解为有很多小块用户空间,通常每一个进程一个独立的用户空间,所有的进程都是存储在用户空间上的,只有同一个进程的用户空间才可以互相访问且用户空间是不能反射到内核空间 ,其中不同进程之间的用户空间互相独立,用户空间和内核空间通过系统调用(即内核提供的api )进行通信,但共享内核空间,而我们的应用程序是存储在一个独立的用户空间部分的内存中的,表示进程运行在一个特定的操作模式中,没有接触物理内存或设备的权限

2、内核空间(Kernel Space)

Linux 系统中内核空间占绝大部分,而是可以理解为是一整块且不同进程之间共享内核空间,表示独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。

三、Linux IPC 原理

Linux已经拥有的进程间通信IPC手段包括(Internet Process Connection): 管道(Pipe)、信号(Signal)和跟踪(Trace)、插口(Socket)、报文队列(Message)、共享内存(Share Memory)和信号量(Semaphore)。

在这里插入图片描述

  • 只有允许不同应用的客户端用 IPC 方式调用远程方法,并且想要在服务中处理多线程时,才有必要使用 AIDL
  • 如果需要调用远程方法,但不需要处理并发 IPC,就应该通过实现一个 Binder 创建接口
  • 如果您想执行 IPC,但只是传递数据,不涉及方法调用,也不需要高并发,就使用 Messenger 来实现接口
  • 如果需要处理一对多的进程间数据共享(主要是数据的 CRUD),就使用 ContentProvider
  • 如果要实现一对多的并发实时通信,就使用 Socket

1、内核态和用户态

普通应用程序运行在用户空间,系统内核运行在内核空间,为了控制应用程序的访问范围、保证系统安全,用户空间只能通过系统调用的方式去访问内核空间。当进程执行系统调用而陷入内核代码的时候,即该进程陷入了内核态,而进程在用户空间执行自己的代码的时候,则是处于用户态。 Linux提供了系统调用作为切换用户态与内核态的机制。其底层是通过中断机制来实现的。简单的说,当用户态执行到需要内核态执行的代码时,会产生一个中断信号,cpu收到信号后会根据中断信号传递的信息进入不同的中断函数,当中断函数执行完毕后,就会回到用户态。

2、IPC 步骤

由于进程 A 和进程 B 的虚拟地址不同,因此它们之间是相互透明的,都以为自己独享了系统的资源,当然也不能直接跟对方交互。但是有些情况下有些进程难免会需要跟其他进程进行交互,这个交互过程就叫 IPC(Inter-Process Communication,进程间通信)。IPC 的实质就是数据的交互,因此我们这里将进行 IPC 过程中的通信调用方和被调用方分别称为数据发送方和数据接收方,则IPC 通信的过程如下:

IPC 通信步骤
1、数据发送方将数据放在内存缓存区,通过系统调用陷入内核态
2、内核程序在内核空间开辟一块内核缓存区,通过 copy_from_user 函数将数据从数据发送方用户空间的内存缓存区拷贝到内核空间的内核缓存区中
3、数据接收方进程在自己的用户空间开辟一块内存缓存区
4、内核程序将内核缓存区中通过 copy_to_user 函数将数据拷贝到数据接收方进程的内存缓存区

因此进程通信的原理就是通过内核空间进行间接通信,简单来说就是进程A通过系统调用访问内核空间,并在内核空间操作一些数据,再由内核空间告知给进程B要操作的数据。

操作系统中安全边界的概念就像环路的概念一样(前提是系统支持这种特性),一个环上持有一个特定的权限组,Intel 支持四层环,但是 Linux 只使用了其中的两环(0号环持有全部权限,3号环持有最少权限,1号和2号环未使用),系统进程运行在1号环,用户进程运行在3号环,如果一个用户进程需要其他高级权限,其必须从3号环过渡成0号环,过渡需要通过一个安全参数检查的网关,这种过渡被称为系统调用,在执行过程中会产生一定数量的计算开销。所以,用户空间要访问内核空间的唯一方式就是系统调用(System Call)

四、内核模块和驱动

在Linux中通过系统调用,用户空间程序就可以访问内核空间,本质上就是借助内核模块去完成的(因为内核空间是共享的)。Linux提供动态可加载内核模块机制(模块是具有独立功能的程序,它可以被单独编译,但不能独立运行)。即通过添加一个内核模块运行在内核空间,用户进程的以该模块作为桥梁完成互相通信了。而在Android系统中这个运行在内核空间的负责各用户进程Binder通信的内核模块叫做Binder驱动

五、Binder

1、Binder IPC概述

从模型上来说Binder IPC基于C/S架构,提供服务的进程作为Server端,而请求服务的作为Client端,两者都运行在各自的用户空间上,只能通过运行于内核空间的Binder 驱动进行通信,而为了便于管理和使用服务Android采用了Service Manager进程统一管理所有的Binder服务。所谓通信本质上就是I/O,Linux 一切皆文件,于是Binder驱动通过虚拟出的设备文件/dev/binder连接Server进程、Client进程和Service Manager进程,通过/dev/binder的句柄即可以进行I/O,每一个句柄最大支持16个线程,又由于Binder 需要一条管理自身的进程,因此最多支持15条工作线程并发。

2、Binder的优势

2.1、Binder 传输性能高

得益于内存映射技术,在初始化Binder设备时即把自己的内存映射到Binder驱动层(内核空间),只需要复制一次即可完成数据传输(通过驱动在内核空间拷贝数据,不需要额外的同步处理),而Binder数据拷贝只需要一次,而管道、消息队列、Socket都需要2次。当用户进程打开Binder设备后会调用mmap函数在驱动中创建一块内存空间用于接收传给本进程的Binder数据。当发生Binder调用时,数据会从数据发送方复制到内核空间中,驱动会在接收进程的缓冲区中寻找一块合适大小的空间来存放数据,因为mmap使得接收进程的用户空间的缓冲区和内核空间的缓冲区是共享的,这样接收进程就不需要将数据从内核复制到自己的用户空间了。

2.2、Binder 安全性好

在 Binder 通信时会根据 UID/PID 进行有效性检测,支持实名binder和匿名binder(匿名Service存储的地方根据具体实现而定,如果服务端不向外告知,外部是不知道对象存在的,当服务绑定客户端成功后才可以通过对象把服务传给远程的客户端)。

3、Binder 使用简单

得益于Binder 优秀的架构设计可以像使用普通对象一样以面向对象的方式调用远程服务对象。在这里插入图片描述
未完待续…

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/334573.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

优思学院|從《狂飙》高启强爱看的《孙子兵法》到六西格玛项目管理

近期最受人瞩目的,无疑是电视剧《狂飙》中出类拔萃的反派高启强。而在剧中,指引高启强走向顶峰的,正是那部著名的军事经典——《孙子兵法》。 在剧中,高启强在一次村庄改造项目上遇到了困难,但他仍保持冷静&#xff0…

QT开发安卓程序初识

Qt | Qt For Android、Qt5.14.2安卓开发环境搭建详细步骤 测试结果如下:

AcWing 840. 模拟散列表

题目描述 餐前小菜: 在讨论本题目之前先看一个简单的问题:给出 NNN 个正整数 (a1,a2,...,an)(a_1,a_2,...,a_n)(a1​,a2​,...,an​),再给出 MMM 个正整数 (x1,x2,...,xm)(x_1,x_2,...,x_m)(x1​,x2​,...,xm​),问这 MMM 个数中…

冷知识|鹤顶红还能用来修长城?

大家好,我是建模助手。 在上篇浅浅地蹭了波热点之后,我灵机一动,倒不如也搞一搞建筑方面的冷知识?冷热搭配,事半功倍... 问问大家,如果谈起古建筑,关键词都有什么?是庄严、震撼、壮…

DHCP实验及配置

DHCP实验配置基于接口拓扑图配置基于全局拓扑图配置基于接口 拓扑图 配置 [Huawei]dhcp enable//在全局下使能DHCP服务 [Huawei]interface GigabitEthernet0/0/0//进入接口 [Huawei-GigabitEthernet0/0/0] ip address 192.168.1.1 255.255.255.0 //配置接口地址 [Huawei-Giga…

什么是QoS?QoS是如何工作的?QoS的实验配置如何进行?

QoS(Quality of Service)是服务质量的简称。对于网络业务来说,服务质量包括哪些方面呢? 从传统意义上来讲,无非就是传输的带宽、传送的时延、数据的丢包率等,而提高服务质量无非也就是保证传输的带宽&…

人工智能:分享五个目前最火的ChatGPT开源项目

❤️作者主页:IT技术分享社区 ❤️作者简介:大家好,我是IT技术分享社区的博主,从事C#、Java开发九年,对数据库、C#、Java、前端、运维、电脑技巧等经验丰富。 ❤️荣誉: CSDN博客专家、数据库优质创作者🏆&…

Nacos简介(一)

目录 一、概览 二、注册中心基本概念 1) 什么是注册中心? 2) 如果没有注册中心?会怎样 3) 注册中心主要有三种角色: 4) 服务注册中心的作用 5)CAP 理论 6)CP和AP的选择 三、什么是 Nacos? 四、Nac…

C++——继承那些事儿你真的知道吗?

目录1.继承的概念及定义1.1继承的概念1.2 继承定义1.2.1定义格式1.2.2继承关系和访问限定符1.2.3继承基类成员访问方式的变化2.父类和子类对象赋值转换3.继承中的作用域4.派生类的默认成员函数5.继承与友元6. 继承与静态成员7.复杂的菱形继承及菱形虚拟继承如何解决数据冗余和二…

Spring 5(黑马)

文章目录传统JavaWeb开发的困惑IoC、DI和Aop思想提出Spring框架的诞生Spring 框架概述Spring 框架历史Spring Framework技术栈图示BeanFactory 快速入门DI 入门案例ApplicationContext快速入门BeanFactory 和 ApplicationContext的关系BeanFactory 的继承体系ApplicationContex…

全志H616——安装SQlite库并使用常用的数据库操作指令

在官网下载安装包:SQLite下载页面、https://www.sqlite.org/2022/sqlite-autoconf-3400100.tar.gz(安装包)下载到MobaXterm_Personal中解压:tar xvf sqlite-autoconf-3400100.tar.gz设置下载路径:./configure --help:.…

滴滴一面:order by 调优10倍,思路是啥?

背景说明: Mysql调优,是大家日常常见的调优工作。 所以,Mysql调优是一个非常、非常核心的面试知识点。 在40岁老架构师 尼恩的读者交流群(50)中,其相关面试题是一个非常、非常高频的交流话题。 近段时间,有小伙伴面…

计算机视觉 吴恩达 week 10 卷积

文章目录一、边缘检测二、填充 padding1、valid convolution2、same convolution三、卷积步长 strided convolution四、三维卷积五、池化层 pooling六、 为什么要使用卷积神经网络一、边缘检测 可以通过卷积操作来进行 原图像 n✖n 卷积核 f✖f 则输出的图像为 n-f1 二、填充…

【软考】系统集成项目管理工程师(二十)项目风险管理

一、项目风险管理概述1. 风险概念2. 风险分类3. 风险成本二、项目风险管理子过程1. 规划风险管理2. 识别风险3. 实施定性风险分析4. 实施定量风险分析5. 规划风险应对6. 控制风险三、项目风险管理流程梳理一、项目风险管理概述 1. 风险概念 风险是一种不确定事件或条件,一旦…

java赫夫曼编码

1.基本介绍 赫夫曼编码也翻译为 哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式, 属于一种程序算法赫夫曼编码是赫哈夫曼树在电讯通信中的经典的应用之一。赫夫曼编码广泛地用于数据文件压缩。其压缩率通常在 20%~90%之间赫夫曼…

[Android]网络框架之Retrofit(kotlin)

目录 Retrofit简介 Retrofit基本使用 Retrofit的注解 Retrofit的转换器 文件的上传与下载 Retrofit简介 Retrofit是一款由Square公司开发的网络库,但是它和OkHttp的定位完全不同。 OkHttp侧重的是底层通信的实现,而Retrofit侧重的是上层接口的封装…

永磁同步电机中BEMF电阻的作用

一、电路原理图 二、原理分析 如图一我们测的是相电压,从理论上我们知道我们测得相电压是一个马鞍波形,马鞍波形中并没有隐含 转子的位置和速度信息。那么为什么我们还要有这样一个电路呢? 这个问题其实困惑了我好久?直到有一天…

曹云金对德云社最大的贡献,就是促进了薪酬体系改革

虽然曹云金已经离开德云社,但是关于他和德云社的话题,却从来没有间断过,尤其是他和小岳岳的对比,更是很有争议的一个话题。实话实说,曹云金在德云社的这些年,对这个这个民间相声社团发展,还是做…

Docker实战

目录一、FROM 语法二、label语法三、run语法四、workdir 语法五、add 和copy 语法六、ENV语法七、volume 和expose 语法八、run、cmd 和entrypoint一、FROM 语法scratch -- 从头开始尽量来使用官方提供的imageFROM 指定基础镜像,最好挑一些apline,slim之…

Qml学习——控件状态

最近在学习Qml,但对Qml的各种用法都不太熟悉,总是会搞忘,所以写几篇文章对学习过程中的遇到的东西做一个记录。 学习参考视频:https://www.bilibili.com/video/BV1Ay4y1W7xd?p1&vd_source0b527ff208c63f0b1150450fd7023fd8 其…