【阅读笔记】MemOS: 大语言模型内存增强生成操作系统

news2025/6/10 12:19:35

核心速览

研究背景

  1. ​研究问题​​:这篇文章要解决的问题是当前大型语言模型(LLMs)在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色,但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成(RAG)虽然结合了外部知识源,但缺乏生命周期管理和多模态集成,限制了其在长期知识演化中的能力。
  2. ​研究难点​​:该问题的研究难点包括:无法建模长期和多轮对话状态;对演变知识的适应性差;缺乏对用户偏好和多代理工作流的持久建模;以及跨平台间“记忆孤岛”的出现,阻碍了先前交互的重用和迁移。
  3. ​相关工作​​:该问题的研究相关工作包括三个主要阶段:
    • ​内存定义和探索阶段​​:研究人员对内存机制进行分类和分析,如参数化与非参数化、短期与长期记忆。隐式内存通过预训练或微调直接嵌入到模型权重中,而显式短期记忆则通过上下文窗口内的提示连接实现。

      在这里插入图片描述

    • ​人类样内存的出现阶段​​:系统优化为长期持久性、上下文感知和自我反思,开始展现出类似人类记忆的结构和行为模式。例如,HippoRAG和Memory3等系统支持行为连续性和个性化内存建模。

    • ​系统性内存管理阶段​​:将基于工具的操作与操作系统启发的治理框架集成。例如,EasyEdit和Mem0支持显式内存操作,而Letta实现了分页上下文管理和模块化调用。

研究方法

这篇论文提出了MEMOS,一种专为大型语言模型设计的内存操作系统。MEMOS首次将内存提升为一等操作资源,建立了统一的表现、组织和治理三种核心内存类型的机制:参数化内存、激活内存和纯文本内存。其核心是MemCube,一个标准化的内存抽象单元,支持跨类型调度、生命周期管理和结构化融合。

在这里插入图片描述

  1. ​内存类型分类​​:MEMOS将内存分为三种核心类型:

    • ​参数化内存​​:长期知识通过预训练或微调直接嵌入到模型权重中,嵌入在前馈和注意力层中。它可以在不需要外部检索的情况下参与推理。
    • ​激活内存​​:在推理过程中生成的瞬态认知状态,包括隐藏层激活、注意力权重和KV缓存结构。它作为“工作内存”层,支持动态调度任务,如上下文持久性、风格控制和行为监督。
    • ​纯文本内存​​:从外部源检索的显式知识,具有可编辑性、共享性和治理兼容性。典型格式包括文档、知识图谱和提示模板。

算法优化: 这种动态转换机制类似于计算机系统中的缓存层次,能够根据访问模式自动优化内存使用效率。
2. ​​MemCube作为核心资源​​:MemCube是系统的封装单元,统一了不同来源、生命周期和调用语义的异构内存形式。MemCube元数据分为三类:

{
  "metadata": {
    "created": "2025-04-10",
    "source": "session_3894", 
    "priority": "mid",
    "access": ["user_483", "admin"]
  },
  "payload": {
    "type": "activation",
    "format": "tensor",
    "injection_layer": 12,
    "value": "[tensor]"
  }
}

在这里插入图片描述

- ​**​描述性元数据​**​:用于标识内存单元并定义其语义角色,包括时间戳、来源签名和语义类型。
- ​**​治理属性​**​:启用多用户环境中的安全和受控使用,包括访问权限、生命周期策略、优先级和合规机制。
- ​**​行为指标​**​:捕获运行时使用模式,自动收集的指标如访问频率、上下文相关性和版本谱系,支持动态调度和跨类型转换。
  1. ​MEMOS架构​​:MEMOS采用模块化的三层架构,形成闭环内存治理框架:

    • ​接口层​​:系统的入口点,负责解析自然语言请求,识别内存相关意图,并调用标准化的Memory API。

    • ​操作层​​:中央控制器,协调MemScheduler、MemLifecycle和MemOperator组件,支持任务感知的调度、生命周期控制和跨用户和工作流的结构组织。

    • ​基础设施层​​:提供可靠执行的基础支持,包括内存存储、访问控制和跨平台互操作性。

      在这里插入图片描述

论文评价

优点与创新

  1. ​统一的内存管理机制​​:MEMOS首次将内存提升为一级操作资源,建立了表示、组织和治理三种核心内存类型的统一机制。
  2. ​MemCube标准化内存抽象​​:引入了MemCube作为标准化的内存抽象单元,支持跨类型调度、生命周期管理和结构化融合。
  3. ​强大的可控性、适应性和可演化性​​:MEMOS提供了一个以内存为中心的执行框架,支持知识更新、用户偏好内部化和跨平台行为一致性维护。
  4. ​结构化的内存存储和接口级调用​​:不仅实现了结构化内存存储,还提供了接口级调用和生命周期管理,支持统一调度和版本控制机制。
  5. ​模块化的三层架构​​:设计了接口层、操作层和基础设施层,形成了闭环的内存治理框架,支持任务感知调度、生命周期控制和结构化组织。
  6. ​跨模态场景的可扩展性​​:系统支持视图定制、访问隔离和扩展性,适用于未来的多模态场景。

不足与反思

  1. ​跨LLM内存共享​​:计划通过扩展Memory Interchange Protocol (MIP) 来定义标准格式、兼容性规则和信任机制,以实现不同基础模型之间的互操作性和模块重用。
  2. ​自演化MemBlocks​​:开发能够基于使用反馈进行自我优化、重建和演化的内存单元,减少手动维护和监管的需求。
  3. ​可扩展的内存市场​​:建立去中心化的内存交换机制,支持资产级交易、协作更新和分布式演化,以促进可持续的AI生态系统。

关键问题及回答

​问题1:MEMOS如何实现对三种核心内存类型(参数化内存、激活内存和纯文本内存)的统一管理和调度?​

MEMOS通过引入MemCube这一标准化的内存抽象单元来实现对三种核心内存类型的统一管理和调度。MemCube不仅封装了内存的语义负载和结构化元数据,还支持跨类型调度、生命周期管理和结构化融合。具体来说,MemCube的元数据分为描述性元数据、治理属性和行为指标三类,分别用于标识内存单元、定义其语义角色、启用安全和受控使用、捕获运行时使用模式等。通过这些机制,MEMOS能够实现对不同类型内存的动态调度和转换,例如将频繁访问的纯文本内存转换为激活模板,将稳定的知识蒸馏为参数化结构,或将很少使用的参数外部化为可编辑的纯文本。

​问题2:MEMOS的架构是如何设计的,各层的具体功能是什么?​

MEMOS采用模块化的三层架构,形成闭环内存治理框架:

  • ​接口层​​:系统的入口点,负责解析自然语言请求,识别内存相关意图,并调用标准化的Memory API。内置的MemReader组件将用户输入转化为结构化的内存操作链。
  • ​操作层​​:中央控制器,协调MemScheduler、MemLifecycle和MemOperator组件,支持任务感知的调度、生命周期控制和跨用户和工作流的结构组织。MemScheduler根据上下文选择合适的内存类型,MemLifecycle管理内存的生命周期,MemOperator则通过标签系统和图结构进行内存的组织和搜索。
  • ​基础设施层​​:提供可靠执行的基础支持,包括内存存储、访问控制和跨平台互操作性。MemVault管理多样的内存仓库,MemLoader和MemDumper支持跨平台和代理的结构化内存迁移,MemStore支持内存单元的开放发布和订阅。

​问题3:MEMOS如何解决当前LLMs在处理长期和多轮对话状态方面的局限性?​

MEMOS通过将内存提升为一等操作资源,并引入MemCube来实现对长期和多轮对话状态的支持。具体来说,MEMOS的激活内存层可以作为“工作内存”层,支持动态调度任务,如上下文持久性、风格控制和行为监督。通过频繁访问的激活状态的转换和持久化,MEMOS能够维持对话状态的连续性。此外,MEMOS的纯文本内存层支持快速的知识更新和个性化注入,使得模型能够结合外部知识源进行推理,从而更好地处理长期和多轮对话。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2406609.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【笔记】AI Agent 项目 SUNA 部署 之 Docker 构建记录

#工作记录 构建过程记录 Microsoft Windows [Version 10.0.27871.1000] (c) Microsoft Corporation. All rights reserved.(suna-py3.12) F:\PythonProjects\suna>python setup.py --admin███████╗██╗ ██╗███╗ ██╗ █████╗ ██╔════╝…

五、jmeter脚本参数化

目录 1、脚本参数化 1.1 用户定义的变量 1.1.1 添加及引用方式 1.1.2 测试得出用户定义变量的特点 1.2 用户参数 1.2.1 概念 1.2.2 位置不同效果不同 1.2.3、用户参数的勾选框 - 每次迭代更新一次 总结用户定义的变量、用户参数 1.3 csv数据文件参数化 1、脚本参数化 …

python基础语法Ⅰ

python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器,来进行一些算术…

C++11 constexpr和字面类型:从入门到精通

文章目录 引言一、constexpr的基本概念与使用1.1 constexpr的定义与作用1.2 constexpr变量1.3 constexpr函数1.4 constexpr在类构造函数中的应用1.5 constexpr的优势 二、字面类型的基本概念与使用2.1 字面类型的定义与作用2.2 字面类型的应用场景2.2.1 常量定义2.2.2 模板参数…

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用

摘要 神经影像技术对医学科学产生了深远的影响,推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下,基于神经血管耦合现象的多模态神经影像方法,通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里,本研…

C++中vector类型的介绍和使用

文章目录 一、vector 类型的简介1.1 基本介绍1.2 常见用法示例1.3 常见成员函数简表 二、vector 数据的插入2.1 push_back() —— 在尾部插入一个元素2.2 emplace_back() —— 在尾部“就地”构造对象2.3 insert() —— 在任意位置插入一个或多个元素2.4 emplace() —— 在任意…

CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)

漏洞概述 漏洞名称:Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号:CVE-2023-25194 CVSS评分:8.8 影响版本:Apache Kafka 2.3.0 - 3.3.2 修复版本:≥ 3.4.0 漏洞类型:反序列化导致的远程代…

Copilot for Xcode (iOS的 AI辅助编程)

Copilot for Xcode 简介Copilot下载与安装 体验环境要求下载最新的安装包安装登录系统权限设置 AI辅助编程生成注释代码补全简单需求代码生成辅助编程行间代码生成注释联想 代码生成 总结 简介 尝试使用了Copilot,它能根据上下文补全代码,快速生成常用…

Axure零基础跟我学:展开与收回

亲爱的小伙伴,如有帮助请订阅专栏!跟着老师每课一练,系统学习Axure交互设计课程! Axure产品经理精品视频课https://edu.csdn.net/course/detail/40420 课程主题:Axure菜单展开与收回 课程视频:

RabbitMQ 各类交换机

为什么要用交换机? 交换机用来路由消息。如果直发队列,这个消息就被处理消失了,那别的队列也需要这个消息怎么办?那就要用到交换机 交换机类型 1,fanout:广播 特点 广播所有消息​​:将消息…

高保真组件库:开关

一:制作关状态 拖入一个矩形作为关闭的底色:44 x 22,填充灰色CCCCCC,圆角23,边框宽度0,文本为”关“,右对齐,边距2,2,6,2,文本颜色白色FFFFFF。 拖拽一个椭圆,尺寸18 x 18,边框为0。3. 全选转为动态面板状态1命名为”关“。 二:制作开状态 复制关状态并命名为”开…

未授权访问事件频发,我们应当如何应对?

在当下,数据已成为企业和组织的核心资产,是推动业务发展、决策制定以及创新的关键驱动力。然而,未授权访问这一隐匿的安全威胁,正如同高悬的达摩克利斯之剑,时刻威胁着数据的安全,一旦触发,便可…

欢乐熊大话蓝牙知识17:多连接 BLE 怎么设计服务不会乱?分层思维来救场!

多连接 BLE 怎么设计服务不会乱?分层思维来救场! 作者按: 你是不是也遇到过 BLE 多连接时,调试现场像网吧“掉线风暴”? 温度传感器连上了,心率带丢了;一边 OTA 更新,一边通知卡壳。…

Element-Plus:popconfirm与tooltip一起使用不生效?

你们好&#xff0c;我是金金金。 场景 我正在使用Element-plus组件库当中的el-popconfirm和el-tooltip&#xff0c;产品要求是两个需要结合一起使用&#xff0c;也就是鼠标悬浮上去有提示文字&#xff0c;并且点击之后需要出现气泡确认框 代码 <el-popconfirm title"是…

Selenium 查找页面元素的方式

Selenium 查找页面元素的方式 Selenium 提供了多种方法来查找网页中的元素&#xff0c;以下是主要的定位方式&#xff1a; 基本定位方式 通过ID定位 driver.find_element(By.ID, "element_id")通过Name定位 driver.find_element(By.NAME, "element_name"…

OPENCV图形计算面积、弧长API讲解(1)

一.OPENCV图形面积、弧长计算的API介绍 之前我们已经把图形轮廓的检测、画框等功能讲解了一遍。那今天我们主要结合轮廓检测的API去计算图形的面积&#xff0c;这些面积可以是矩形、圆形等等。图形面积计算和弧长计算常用于车辆识别、桥梁识别等重要功能&#xff0c;常用的API…

spring boot使用HttpServletResponse实现sse后端流式输出消息

1.以前只是看过SSE的相关文章&#xff0c;没有具体实践&#xff0c;这次接入AI大模型使用到了流式输出&#xff0c;涉及到给前端流式返回&#xff0c;所以记录一下。 2.resp要设置为text/event-stream resp.setContentType("text/event-stream"); resp.setCharacter…

二叉树-144.二叉树的前序遍历-力扣(LeetCode)

一、题目解析 对于递归方法的前序遍历十分简单&#xff0c;但对于一位合格的程序猿而言&#xff0c;需要掌握将递归转化为非递归的能力&#xff0c;毕竟递归调用的时候会调用大量的栈帧&#xff0c;存在栈溢出风险。 二、算法原理 递归调用本质是系统建立栈帧&#xff0c;而非…

【技巧】dify前端源代码修改第一弹-增加tab页

回到目录 【技巧】dify前端源代码修改第一弹-增加tab页 尝试修改dify的前端源代码&#xff0c;在知识库增加一个tab页"HELLO WORLD"&#xff0c;完成后的效果如下 [gif01] 1. 前端代码进入调试模式 参考 【部署】win10的wsl环境下启动dify的web前端服务 启动调试…

Java设计模式:责任链模式

一、什么是责任链模式&#xff1f; 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09; 是一种 行为型设计模式&#xff0c;它通过将请求沿着一条处理链传递&#xff0c;直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者&#xff0c;…