勒让德多项式 (Legendre)
当区间为 [ − 1 , 1 ] [-1,1] [−1,1],权函数 ρ ( x ) = 1 ρ(x)=1 ρ(x)=1时,由 1 , x , . . . , x n , . . . {1,x,...,x^n,...} 1,x,...,xn,...正交化得到的多项式称为勒让德多项式,并用 P 0 ( x ) , P 1 ( x ) , . . . , P n ( x ) , . . . P_0(x),P_1(x),...,P_n(x),... P0(x),P1(x),...,Pn(x),...表示。
Legendre勒让德多项式的递推公式:
( n + 1 ) × P n + 1 ( x ) = ( 2 n + 1 ) × x × P n ( x ) − n × P n − 1 ( x ) , ( n = 1 , 2 , . . . ) (n+1) \times P_{n+1}(x)=(2n+1) \times x \times P_n(x)-n \times P_{n-1}(x),(n=1,2,...) (n+1)×Pn+1(x)=(2n+1)×x×Pn(x)−n×Pn−1(x),(n=1,2,...)
P
0
(
x
)
=
1
P_0(x)=1
P0(x)=1
P
1
(
x
)
=
x
P_1(x)=x
P1(x)=x
P
2
(
x
)
=
(
3
x
2
−
1
)
/
2
P_2(x)=(3x^2-1)/2
P2(x)=(3x2−1)/2
P
3
(
x
)
=
(
5
x
3
−
3
x
)
/
2
P_3(x)=(5x^3-3x)/2
P3(x)=(5x3−3x)/2
P
4
(
x
)
=
(
35
x
4
−
30
x
2
+
3
)
/
8
P_4(x)=(35x^4-30x^2+3)/8
P4(x)=(35x4−30x2+3)/8
P
5
(
x
)
=
(
63
x
5
−
70
x
3
+
15
x
)
/
8
P_5(x)=(63x^5-70x^3+15x)/8
P5(x)=(63x5−70x3+15x)/8
P
6
(
x
)
=
(
231
x
6
−
315
x
4
+
105
x
2
−
5
)
/
16
,
.
.
.
P_6(x)=(231x^6-315x^4+105x^2-5)/16,...
P6(x)=(231x6−315x4+105x2−5)/16,...