yolov11与双目测距结合,实现目标的识别和定位测距(onnx版本)

news2025/6/8 18:39:48

一、yolov11+双目测距基本流程 

yolov11 + 双目测距的大致流程就是:

双目标定 --> 立体校正(含消除畸变) --> 立体匹配 --> 视差计算 --> 深度计算(3D坐标)计算  --> 目标检测  --> 目标距离计算及可视化

下面将分别阐述每一个步骤并使用python来实现。

二、双目测距

其中双目测距的原理及过程请查看我下面的博客

保姆级双目测距原理及代码-CSDN博客

三、目标检测

在本项目中,我们选用了轻量级且高效的目标检测模型 YOLOv11,并使用其 ONNX格式模型部署,结合OpenCV和ONNX Runtime完成前向推理,实现高性能目标识别。整个检测流程主要包括 模型转换图像预处理、模型推理、后处理 四个步骤,以下是详细解析:

3.1 模型转换(PyTorch → ONNX)

为提升系统在不同平台的兼容性与环境,我们将 PyTorch 格式的 YOLOv11 模型转换为 ONNX 格式,供 onnxruntime 加载使用。

Ultralytics 框架提供了简洁的模型导出接口,支持直接将训练好的 .pt 权重导出为 ONNX 文件。转换代码如下:

from ultralytics import YOLO

# 加载YOLOv11模型
model = YOLO("./weight/yolo11s.pt")

# 转onnxsimplify
model.export(format="onnx", simplify=False, device="cpu", opset=15)

其中参数说明如下:

  • format="onnx":指定导出格式为 ONNX。

  • simplify=False:是否使用 onnxsim 简化模型结构。此处设置为 False,保持模型结构完整。

  • device="cpu":导出时使用 CPU 进行模型加载和转换。

  • opset=15:指定 ONNX 的算子集版本,确保在现代推理环境中兼容性良好。

导出成功后,系统会在当前目录生成名为 yolo11s.onnx 的模型文件。

该模型可直接通过 onnxruntime.InferenceSession 加载,用于后续图像目标检测与测距任务。

3.2 图像预处理(Preprocess)

输入图像在送入YOLOv11模型前,需要经过标准化与尺寸调整。预处理的关键操作包括:

  • 颜色空间转换:BGR转RGB(符合模型训练时的格式要求);

  • 等比例缩放:根据模型输入尺寸(如640x640)对图像缩放,同时添加灰色边框填充,确保图像比例不变;

  • 归一化:将像素值归一到0,10, 10,1;

  • 维度调整:转换为 NCHW 格式,以匹配ONNX模型输入要求。

其中,图像预处理代码如下:

 def preprocess_image(self, image):
        # 调节颜色通道
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        # rsize + padding
        h, w, c = image.shape

        # 求各自缩放到模型的缩放比例,找出最小比例
        r_w = self.model_width / w
        r_h = self.model_height / h

        ratio = 0

        if r_h > r_w:
            tw = self.model_width
            th = int(h * r_w)
            ratio = r_w
            # 填充尺寸
            p_x1 = p_x2 = 0
            p_y1 = int((self.model_height - th) / 2)
            p_y2 = self.model_height - th - p_y1

        else:
            th = self.model_height
            tw = int(w * r_h)
            ratio = r_h
            # 填充尺寸
            p_y1 = p_y2 = 0
            p_x1 = int((self.model_width - tw) / 2)
            p_x2 = self.model_width - tw - p_x1

        image = cv2.resize(image, (tw, th))
        image = cv2.copyMakeBorder(image, p_y1, p_y2, p_x1, p_x2, cv2.BORDER_CONSTANT, (128, 128, 128))
        image2 = image
        # 转换为浮点型并归一化到 [0, 1]
        image = image.astype(np.float32) / 255.0
        # 转换为 NCHW 格式(批次、通道、高、宽)
        image = np.transpose(image, (2, 0, 1))
        image = np.expand_dims(image, axis=0)
        return image, ratio, [p_x1, p_x2, p_y1, p_y2]

3.2 ONNX模型推理

通过 onnxruntime.InferenceSession 加载YOLOv11的ONNX模型,并根据模型定义的输入输出节点,构建推理输入:

self.onnx_session = onnxruntime.InferenceSession(self.onnx_path)
input_feed = {self.input_name[0]: preprocessed_image}
pred_bbox = self.onnx_session.run(None, input_feed)[0]

3.3 后处理(Postprocess)

在目标检测模型完成前向推理后,其输出通常为大量未筛选的候选框(bounding boxes),每个候选框包含位置坐标、各类别置信度等信息。为了从中提取有效的目标信息,并在原始图像上可视化展示,需对模型输出进行后处理。后处理步骤如下:

  1. 维度变换与置信度筛选
    模型输出的张量 pre_box 通过 np.einsum("bcn->bnc", pre_box) 调整维度顺序,得到 [num_boxes, num_channels] 形式的数据。随后提取每个候选框的最大类别置信度,并只保留置信度高于设定阈值 conf_thres 的候选框。

  2. 提取目标框与类别索引
    对保留的候选框,提取其前四个位置坐标、最大置信度和类别索引。类别索引由 np.argmax 得到,即置信度最大的类别。

  3. 非极大值抑制(NMS)
    通过 OpenCV 的 cv2.dnn.NMSBoxes 实现 NMS,去除重叠度(IoU)过高的冗余候选框,保留最优检测结果。

  4. 坐标解码与图像尺度还原
    检测框坐标从中心点形式 cx, cy, w, h 转换为边界框形式 x1, y1, x2, y2,并根据预处理的 padding 和缩放比例 ratio 还原为原始图像坐标。边界值被限制在图像范围内,防止越界。

其中,后处理代码如下:

    def postprocess_image(self, original_image, pre_box, points_3d, ratio, pad_size):

        pre_box = np.einsum("bcn->bnc", pre_box)

        # 获取每个预测框的最大置信度
        conf_scores = np.amax(pre_box[..., 4:], axis=-1)

        # 只保留置信度大于阈值的预测框
        x = pre_box[conf_scores > self.conf_thres]

        x = np.c_[x[..., :4], conf_scores[conf_scores > self.conf_thres], np.argmax(x[..., 4:], axis=-1)]

        # NMS filtering
        x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], self.conf_thres, self.iou_thres)]

        # Decode and return
        if len(x) > 0:
            # cxcywh -> xyxy
            x[..., [0, 1]] -= x[..., [2, 3]] / 2
            x[..., [2, 3]] += x[..., [0, 1]]

            # 恢复成原图尺寸
            x[..., :4] -= [pad_size[0], pad_size[2], pad_size[1], pad_size[3]]
            x[..., :4] /= ratio

            # 检查边界
            x[..., [0, 2]] = x[:, [0, 2]].clip(0, original_image.shape[1])
            x[..., [1, 3]] = x[:, [1, 3]].clip(0, original_image.shape[0])

四、目标距离计算及可视化

在完成目标检测的后处理阶段后,系统已经获得每个候选目标的二维图像坐标和置信度信息。为了进一步实现三维感知功能,本系统结合双目测距模块输出的 points_3d,实现目标距离的估算与图像可视化展示。

4.1 距离估算(3D中心点提取)

首先,对通过置信度筛选和 NMS 处理后的目标框,计算其中心点坐标:

随后,根据中心点的像素坐标,从稠密深度图中提取该位置对应的三维坐标:

其中,Z表示相机到目标的深度距离。

4.2 类别过滤与绘制逻辑

为提升系统的针对性与应用适应性,引入了可配置的 detection_name 白名单机制。仅当检测到的目标类别存在于该名单中时,才执行可视化绘制与距离估算操作。该策略可适用于特定场景(如仅关注“人”或“汽车”等对象)。

4.3 可视化结果展示

最终,为提升用户体验并实现直观展示,系统将检测结果绘制回原始图像中,具体包括:

  • 目标框绘制:使用 cv2.rectangle 绘制每个目标的边界框,不同类别采用不同颜色(由 COLORS 字典控制);

  • 距离信息叠加:在目标框上方添加该目标与相机之间的距离信息,格式为 "Distance: 1.52 m"

  • 类别与置信度(可选):支持在框上叠加类别名称与预测置信度,用于辅助判断目标识别准确性。

yolov11双目测距图像

yolov11双目测距深度

五、整体代码介绍

本代码实现了基于双目立体视觉的目标检测与测距系统,涵盖了畸变矫正、立体校正、视差计算及深度计算和目标检测关键步骤。

测距模块从 stereoconfig 模块中加载相机标定参数,包括内外参和畸变系数,利用 OpenCV 的 cv2.stereoRectify() 对左右相机图像进行立体校正,保证图像对齐。随后,采用 SGBM(半全局匹配算法)计算视差图,并结合 WLS(加权最小二乘滤波)滤波器对视差图进行优化,提高视差的平滑性和准确性。接着,通过 cv2.reprojectImageTo3D() 将视差图转换成三维点云,得到每个像素的三维信息。检测模块基于ONNX格式的YOLO模型,结合后处理与非极大值抑制筛选检测框,并计算目标中心点的三维坐标实现距离估计。

系统支持两种运行模式:图片模式(image_mode)用于处理静态双目图像,摄像头模式(camera_mode)支持实时视频流处理,实现动态测距与目标检测。可根据自己需求进行相应选择。

本代码仅依赖 ONNX、NumPy 和 OpenCV 库,无需依赖 PyTorch 等深度学习框架,因而更适合部署在边缘设备上,具有较低的资源消耗和良好的跨平台兼容性。

关于该系统涉及到的完整源码、测试图片视频、说明、安装环境等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。

yolov11+双目测距代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2404430.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于51单片机和8X8点阵屏、独立按键的填充消除类小游戏

目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、8X8点阵屏2、独立按键3、定时器04、定时器1 四、主函数总结 系列文章目录 前言 使用的是普中A2开发板。 【单片机】STC89C52RC 【频率】12T11.0592MHz 【外设】8X8点阵屏、独立按键 效果查看/操作演示&#x…

物联网技术发展与应用研究分析

文章目录 引言一、物联网的基本架构(一)感知层(二)网络层(三)平台层(四)应用层 二、物联网的关键技术(一)传感器技术(二)通信技术&…

金融系统渗透测试

金融系统渗透测试是保障金融机构网络安全的核心环节,它的核心目标是通过模拟攻击手段主动发现系统漏洞,防范数据泄露、资金盗取等重大风险。 一、金融系统渗透测试的核心框架 合规性驱动 需严格遵循《网络安全法》《数据安全法》及金融行业监管要求&am…

9.进程间通信

1.简介 为啥要有进程间通信? 如果未来进程之间要协同呢?一个进程要把自己的数据交给另一个进程!进程是具有独立性的,所以把一个进程的数据交给另一个进程----基本不可能!必须通信起来,就必须要有另一个人…

React 基础入门笔记

一、JSX语法规则 1. 定义虚拟DOM时,不要写引号 2.标签中混入JS表达式时要用 {} (1).JS表达式与JS语句(代码)的区别 (2).使用案例 3.样式的类名指定不要用class,要用className 4.内…

压测软件-Jmeter

1 下载和安装 1.1 检查运行环境 Jmeter需要运行在java环境(JRE 或 JDK)中 在window的"命令提示窗"查看安装的java版本: java -version 1.2 下载Jmeter 从Apache官网下载Jmeter安装包 1.3 解压和运行 解压后,进入bin文件夹,双击jmeter.bat即可…

NLP学习路线图(三十):微调策略

在自然语言处理领域,预训练语言模型(如BERT、GPT、T5)已成为基础设施。但如何让这些“通才”模型蜕变为特定任务的“专家”?微调策略正是关键所在。本文将深入剖析七种核心微调技术及其演进逻辑。 一、基础概念:为什么需要微调? 预训练模型在海量语料上学习了通用语言表…

leetcode刷题日记——1.组合总和

解答&#xff1a; class Solution { public:void dfs(vector<int>& candidates, int target, vector<vector<int>>& ans, vector<int>& combine, int idx) {if(idxcandidates.size()){//遍历完的边界return;}if(target0){//找完了能组成和…

关于单片机的基础知识(一)

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///计算机爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于单片机基础知识的相关内容&#xf…

Xilinx FPGA 重构Multiboot ICAPE2和ICAPE3使用

一、FPGA Multiboot 本文主要介绍基于IPROG命令的FPGA多版本重构&#xff0c;用ICAP原语实现在线多版本切换。需要了解MultiBoot Fallback点击链接。 如下图所示&#xff0c;ICAP原语可实现flash中n1各版本的动态切换&#xff0c;在工作过程中&#xff0c;可以通过IPROG命令切…

Redis专题-基础篇

题记 本文涵盖了Redis的各种数据结构和命令&#xff0c;Redis的各种常见Java客户端的应用和最佳实践 jedis案例github地址&#xff1a;https://github.com/whltaoin/fedis_java_demo SpringbootDataRedis案例github地址&#xff1a;https://github.com/whltaoin/springbootData…

springMVC-11 中文乱码处理

前言 本文介绍了springMVC中文乱码的解决方案&#xff0c;同时也贴出了本人遇到过的其他乱码情况&#xff0c;可以根据自身情况选择合适的解决方案。 其他-jdbc、前端、后端、jsp乱码的解决 Tomcat导致的乱码解决 自定义中文乱码过滤器 老方法&#xff0c;通过javaW…

【iOS安全】iPhone X iOS 16.7.11 (20H360) WinRa1n 越狱教程

前言 越狱iPhone之后&#xff0c;一定记得安装一下用于屏蔽更新的描述文件&#xff08;可使用爱思助手&#xff09; 因为即便关闭了自动更新&#xff0c;iPhone仍会在某些时候自动更新系统&#xff0c;导致越狱失效&#xff1b;更为严重的是&#xff0c;更新后的iOS版本可能是…

智能标志桩图像监测装置如何守护地下电缆安全

在现代城市基础设施建设中&#xff0c;大量电缆、管道被埋设于地下&#xff0c;这虽然美化了城市景观&#xff0c;却也带来了新的安全隐患。施工挖掘时的意外破坏、自然灾害的影响&#xff0c;都可能威胁这些"城市血管"的安全运行。 传统的地下设施标识方式往往只依…

【网站建设】网站 SEO 中 meta 信息修改全攻略 ✅

在做 SEO 优化时,除了前一篇提过的Title之外,meta 信息(通常指 <meta> 标签)也是最基础、最重要的内容之一,主要包括: <meta name="description"> <meta name="keywords"> 搜索引擎重点参考这些信息,决定你网页的展示效果与排名。…

计算机视觉处理----OpenCV(从摄像头采集视频、视频处理与视频录制)

一、采集视频 VideoCapture 用于从视频文件、摄像头或其他视频流设备中读取视频帧。它可以捕捉来自 多种源的视频。 cv2.VideoCapture() 打开摄像头或视频文件。 cap cv2.VideoCapture(0) # 0表示默认摄像头&#xff0c;1是第二个摄像头&#xff0c;传递视频文件路径也可以 …

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- 第一篇:MIPI CSI-2基础入门

第一篇&#xff1a;MIPI CSI-2基础入门 1. 为什么需要CSI-2&#xff1f; 痛点场景对比 &#xff08;用生活案例降低理解门槛&#xff09; 传统并行接口CSI-2接口30根线传输720P图像仅需5根线&#xff08;1对CLK4对DATA&#xff09;线距&#xff1e;5cm时出现重影线缆可长达1…

变幻莫测:CoreData 中 Transformable 类型面面俱到(一)

概述 各位似秃似不秃小码农们都知道&#xff0c;在苹果众多开发平台中 CoreData 无疑是那个最简洁、拥有“官方认证”且最具兼容性的数据库框架。使用它可以让我们非常方便的搭建出 App 所需要的持久存储体系。 不过&#xff0c;大家是否知道在 CoreData 中还存在一个 Transfo…

开源技术驱动下的上市公司财务主数据管理实践

开源技术驱动下的上市公司财务主数据管理实践 —— 以人造板制造业为例 引言&#xff1a;财务主数据的战略价值与行业挑战 在资本市场监管日益严格与企业数字化转型的双重驱动下&#xff0c;财务主数据已成为上市公司财务治理的核心基础设施。对于人造板制造业而言&#xff0…

Java建造者模式(Builder Pattern)详解与实践

一、引言 在软件开发中&#xff0c;我们经常会遇到需要创建复杂对象的场景。例如&#xff0c;构建一个包含多个可选参数的对象时&#xff0c;传统的构造函数或Setter方法可能导致代码臃肿、难以维护。此时&#xff0c;建造者模式&#xff08;Builder Pattern&#xff09;便成为…