小白的进阶之路系列之十----人工智能从初步到精通pytorch综合运用的讲解第三部分

news2025/6/8 4:37:40

本文将介绍Autograd基础。

PyTorch的Autograd特性是PyTorch灵活和快速构建机器学习项目的一部分。它允许在一个复杂的计算中快速而简单地计算多个偏导数(也称为梯度)。这个操作是基于反向传播的神经网络学习的核心。

autograd的强大之处在于它在运行时动态地跟踪你的计算,这意味着如果你的模型有决策分支,或者循环的长度直到运行时才知道,计算仍然会被正确地跟踪,你会得到正确的梯度来驱动学习。这一点,再加上模型是用Python构建的这一事实,提供了比依赖于静态分析更严格的结构模型来计算梯度的框架更大的灵活性。

我们需要Autograd做什么?

机器学习模型是一个函数,有输入和输出。在这个讨论中,我们将把输入作为一个i维向量 x ⃗ \vec{x} x ,带有元素 x i x_i xi. 然后我们可以将模型M表示为输入的向量值函数: y ⃗ = M ⃗ ( x ⃗ ) \vec{y}=\vec{M}(\vec{x}) y =M (x )(我们把M的输出值当作一个向量,因为一般来说,一个模型可以有任意数量的输出。)

由于我们将主要在训练的背景下讨论自梯度,我们感兴趣的输出将是模型的损失。损失函数 L ( y ⃗ ) = L ( M ⃗ ( x ⃗ ) ) L(\vec{y})=L(\vec{M}(\vec{x})) L(y )=L(M (x ))是模型输出的单值标量函数。该函数表示我们的模型预测与特定输入的理想输出之间的距离。注意:在这一点之后,我们通常会在上下文清楚的地方省略向量符号-例如: y y y而不是 y ⃗ \vec{y} y

在训练模型时,我们希望将损失最小化。在一个完美模型的理想情况下,这意味着调整它的学习权值——也就是函数的可调参数——使得所有输入的损失为零。在现实世界中,这意味着一个不断调整学习权重的迭代过程,直到我们看到对于各种各样的输入,我们得到了一个可以容忍的损失。

我们如何决定将重物推多远,朝哪个方向?我们想要最小化损失,这意味着使它对输入的一阶导数等于0。即 ∂ L ∂ x = 0 \frac{\partial{L}}{\partial{x}}=0 xL=0

但是,回想一下,损失不是直接来自输入,而是模型输出的函数(直接是输入的函数), ∂ L ∂ x = ∂ L ( y ⃗ ) ∂ x \frac{\partial{L}}{\partial{x}}=\frac{\partial{L(\vec{y})}}{\partial{x}} xL=xL(y ). 根据微分的链式法则,我们有 ∂ L ( y ⃗ ) ∂ x = ∂ L ( y ⃗ ) ∂ y ∗ ∂ M ( x ) ∂ x \frac{\partial{L(\vec{y})}}{\partial{x}}=\frac{\partial{L(\vec{y})}}{\partial{y}}*\frac{\partial{M(x)}}{\partial{x}} xL(y )=yL(y )xM(x)。在这个式子中, ∂ M ( x ) ∂ x \frac{\partial{M(x)}}{\partial{x}} xM(x)就是事情变得复杂的地方。模型输出相对于其输入的偏导数,如果我们再次使用链式法则展开表达式,将涉及对模型中每个乘法学习权值、每个激活函数和每个其他数学变换的许多局部偏导数。每个这样的偏导数的完整表达式是通过计算图的每个可能路径的局部梯度的乘积的和,该计算图以我们试图测量的梯度的变量结束。

特别是,我们对学习权值上的梯度很感兴趣——它们告诉我们改变每个权值的方向,以使损失函数更接近于零。

由于这种局部导数的数量(每个对应于模型计算图中的单独路径)将随着神经网络的深度呈指数增长,计算它们的复杂性也会呈指数增长。这就是autograd的用武之地:它跟踪每一次计算的历史。PyTorch模型中的每个计算张量都携带其输入张量和用于创建它的函数的历史记录。结合PyTorch函数意味着作用于张量的事实,每个函数都有一个内置的实现来计算它们自己的导数,这大大加快了学习所需的局部导数的计算速度。

一个简单的例子

这是很多的理论——但是在实践中使用自动光栅是什么样子的呢?

让我们从一个简单的例子开始。首先,我们将做一些导入来绘制结果:

# %matplotlib inline

import torch

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import math

接下来,我们将创建一个输入张量,它在区间上充满了均匀间隔的值[0,2π],并指定requires_grad=True。(像大多数创建张量的函数一样,torch.linspace()接受一个可选的requires_grad选项。)设置此标志意味着在接下来的每个计算中,autograd将在该计算的输出张量中积累计算的历史。

a = torch.linspace(0., 2. * math.pi, steps=25

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2403729.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++11 Move Constructors and Move Assignment Operators 从入门到精通

文章目录 一、引言二、基本概念2.1 右值引用(Rvalue References)2.2 移动语义(Move Semantics) 三、移动构造函数(Move Constructors)3.1 定义和语法3.2 示例代码3.3 使用场景 四、移动赋值运算符&#xff…

11 - ArcGIS For JavaScript -- 高程分析

这里写自定义目录标题 描述代码实现结果 描述 高程分析是地理信息系统(GIS)中的核心功能之一&#xff0c;主要涉及对地表高度数据(数字高程模型, DEM)的处理和分析。 ArcGIS For JavaScript4.32版本的发布&#xff0c;提供了Web端的针对高程分析的功能。 代码实现 <!doct…

通道注意力

一、 什么是注意力 其中注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器&#xff0c;就像人类视觉会自动忽略背景&#xff0c;聚焦于图片中的主体&#xff08;如猫、汽车&#xff09;。 transformer中的叫做自注意力机制&#xff0c;他是一种自己学习自己的机制…

2048游戏的技术实现分析-完全Java和Processing版

目录 简介Processing库基础项目构建指南项目结构核心数据结构游戏核心机制图形界面实现性能优化代码详解设计模式分析测试策略总结与展望简介 2048是一款由Gabriele Cirulli开发的经典益智游戏。本文将深入分析其Java实现版本的技术细节。该实现使用了Processing库来创建图形界…

全国县域统计年鉴PDF-Excel电子版-2022年

全国县域统计年鉴PDF-Excel电子版-2022年.ziphttps://download.csdn.net/download/2401_84585615/89784662 https://download.csdn.net/download/2401_84585615/89784662 《中国县域统计年鉴》是一部全面反映中国县域社会经济发展状况的资料性年鉴。自2014年起&#xff0c;该年…

gitlab CI/CD本地部署配置

背景: 代码管理平台切换为公司本地服务器的gitlab server。为了保证commit的代码至少编译ok&#xff0c;也为了以后能拓展test cases&#xff0c;现在先搭建本地gitlab server的CI/CD基本的编译job pipeline。 配置步骤&#xff1a; 先安装gitlab-runner: curl -L "ht…

AI大模型在测试领域应用案例拆解:AI赋能的软件测试效能跃迁的四大核心引擎(顺丰科技)

导语 5月份QECon深圳大会已经结束&#xff0c;继续更新一下案例拆解&#xff0c;本期是来自顺丰科技。 文末附完整版材料获取方式。 首先来看一下这个案例的核心内容&#xff0c;涵盖了测四用例设计、CI/CD辅助、测试执行、监控预警四大方面&#xff0c;也是算大家比较熟悉的…

从零搭建uniapp项目

目录 创建uni-app项目 基础架构 安装 uni-ui 组件库 安装sass依赖 easycom配置组件自动导入 配置view等标签高亮声明 配置uni-ui组件类型声明 解决 标签 错误 关于tsconfig.json中提示报错 关于非原生标签错误&#xff08;看运气&#xff09; 安装 uview-plus 组件库…

OpenCV CUDA模块图像处理------图像融合函数blendLinear()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 该函数执行 线性融合&#xff08;加权平均&#xff09; 两个图像 img1 和 img2&#xff0c;使用对应的权重图 weights1 和 weights2。 融合公式…

图片压缩工具 | 图片生成PDF文档

OPEN-IMAGE-TINY&#xff0c;一个基于 Electron VUE3 的图片压缩工具&#xff0c;项目开源地址&#xff1a;https://github.com/0604hx/open-image-tiny ℹ️ 需求描述 上一版本发布后&#xff0c;有用户提出想要将图片转换&#xff08;或者说生成更为贴切&#xff09;PDF文档…

VSCode - VSCode 放大与缩小代码

VSCode 放大与缩小代码 1、放大 点击顶部菜单栏【查看】 -> 点击外观 -> 点击【放大】 或者&#xff0c;使用快捷键&#xff1a;Ctrl # 操作方式先按住 Ctrl 键&#xff0c;再按 键2、缩小 点击顶部菜单栏【查看】 -> 点击外观 -> 点击【缩小】 或者&#x…

11-Oracle 23ai Vector Embbeding和ONNX

Embedding &#xff08;模型嵌入&#xff09;是 AI 领域的一个核心概念 一、Embedding&#xff08;嵌入&#xff09;的含义 Embedding 是一种将 非结构化数据​&#xff08;如文本、图像、音频、视频&#xff09;转换为 数值向量的技术。 其核心是通过 嵌入模型​&#xff08;…

OpenCV 图像色彩空间转换与抠图

一、知识点: 1、色彩空间转换函数 (1)、void cvtColor( InputArray src, OutputArray dst, int code, int dstCn 0, AlgorithmHint hint cv::ALGO_HINT_DEFAULT ); (2)、将图像从一种颜色空间转换为另一种。 (3)、参数说明: src: 输入图像&#xff0c;即要进行颜…

Amazing晶焱科技:电子系统产品在多次静电放电测试后的退化案例

在我们的电子设计世界里&#xff0c;ESD&#xff08;静电放电&#xff09;问题总是让人头疼。尤其是当客户面临系统失效的困境时&#xff0c;寻找一个能够彻底解决问题的方案就变得格外重要。这一次&#xff0c;我们要谈的是一个经典案例&#xff1a;电子系统产品在多次静电放电…

C# 快速检测 PDF 是否加密,并验证正确密码

引言&#xff1a;为什么需要检测PDF加密状态&#xff1f; 在批量文档处理系统&#xff08;如 OCR 文字识别、内容提取、格式转换&#xff09;中&#xff0c;加密 PDF 无法直接操作。检测加密状态可提前筛选文件&#xff0c;避免流程因密码验证失败而中断。 本文使用 Free Spire…

华为云Flexus+DeepSeek征文| 华为云Flexus X实例单机部署Dify-LLM应用开发平台全流程指南

华为云FlexusDeepSeek征文&#xff5c; 华为云Flexus X实例单机部署Dify-LLM应用开发平台全流程指南 前言一、相关名词介绍1.1 华为云Flexus X实例介绍1.2 Dify介绍1.3 DeepSeek介绍1.4 华为云ModelArts Studio介绍 二、部署方案介绍2.1 方案介绍2.2 方案架构2.3 需要资源2.4 本…

Python: 操作 Excel折叠

💡Python 操作 Excel 折叠(分组)功能详解(openpyxl & xlsxwriter 双方案) 在处理 Excel 报表或数据分析时,我们常常希望通过 折叠(分组)功能 来提升表格的可读性和组织性。本文将详细介绍如何使用 Python 中的两个主流 Excel 操作库 —— openpyxl 和 xlsxwriter …

IBM官网新闻爬虫代码示例

通常我们使用Python编写爬虫&#xff0c;常用的库有requests&#xff08;发送HTTP请求&#xff09;和BeautifulSoup&#xff08;解析HTML&#xff09;。但这里需要注意的是&#xff0c;在爬取任何网站之前&#xff0c;务必遵守该网站的robots.txt文件和相关法律法规&#xff0c…

视觉SLAM基础补盲

3D Gaussian Splatting for Real-Time Radiance Field Rendering SOTA方法3DGS contribution传统重建基于点的渲染NeRF 基础知识补盲光栅化SFM三角化极线几何标准的双目立体视觉立体匹配理论与方法立体匹配的基本流程李群和李代数 李群和李代数的映射李代数的求导李代数解决求导…

Vue-3-前端框架Vue基础入门之VSCode开发环境配置和Tomcat部署Vue项目

文章目录 1 安装配置VSCode1.1 安装中文语言插件1.2 主题颜色1.3 禁用自动更新1.4 开启代码提示设置1.5 安装open in browser插件2 安装配置nodejs2.1 配置环境变量2.2 npm与maven的区别2.3 使用npm避坑3 创建Vue项目3.1 两种创建方式3.2 package.json3.3 安装新的依赖3.4 运行…