多类别分类中的宏平均和加权平均

news2025/6/6 17:31:19

前言

在处理多类别分类问题时,宏平均(Macro-average)和加权平均(Weighted-average)是评估模型性能时常用的两种聚合指标。它们都能将每个类别的独立指标(如精确率、召回率、F1分数等)整合成一个单一的全局指标,但处理方式有所不同,从而反映出模型性能的不同侧重。

宏平均(Macro-average)

宏平均是对所有类别的指标进行简单的算术平均。计算步骤如下:

  1. 独立计算每个类别的指标: 首先,为每个类别独立计算其精确率、召回率或F1分数等。
  2. 求取平均值: 然后,将所有类别的这些独立指标值相加,并除以类别的总数。

宏平均(Macro-average)是一种用于评估多类别分类模型性能的指标计算方法,它通过对所有类别的指标(如精确率、召回率、F1值等)进行简单平均得到。宏平均的计算公式如下:
假设模型有 C 个类别,对于每个类别 i i i i i i = 1, 2, … \ldots , C ),计算其对应的指标值 M i M_i Mi(例如,精确率 P i P_i Pi 、召回率 R i R_i Ri、F1值 F 1 i F1_i F1i 等)。宏平均 M m a c r o M_{macro} Mmacro 的计算公式为:
M macro = 1 C ∑ i = 1 C M i M_{\text{macro}} = \frac{1}{C} \sum_{i=1}^{C} M_i Mmacro=C1i=1CMi
具体到不同的指标,宏平均的计算可以细分为:

  1. 宏平均精确率(Macro-Precision)
    P macro = 1 C ∑ i = 1 C P i P_{\text{macro}} = \frac{1}{C} \sum_{i=1}^{C} P_i Pmacro=C1i=1CPi
    其中 P i P_i Pi 是类别 i i i 的精确率。
  2. 宏平均召回率(Macro-Recall)
    R macro = 1 C ∑ i = 1 C R i R_{\text{macro}} = \frac{1}{C} \sum_{i=1}^{C} R_i Rmacro=C1i=1CRi
    其中 R i R_i Ri 是类别 i i i 的召回率。
  3. 宏平均F1值(Macro-F1)
    F 1 macro = 1 C ∑ i = 1 C F 1 i F1_{\text{macro}} = \frac{1}{C} \sum_{i=1}^{C} F1_i F1macro=C1i=1CF1i
    其中 F 1 i F1_i F1i 是类别 i i i 的F1值,计算公式为:
    F 1 i = 2 ⋅ P i ⋅ R i P i + R i F1_i = 2 \cdot \frac{P_i \cdot R_i}{P_i + R_i} F1i=2Pi+RiPiRi
    特点:
  • 平等对待每个类别: 宏平均不考虑每个类别中样本数量的多少,对所有类别一视同仁。这意味着,即使某个类别的样本数量很少,其在该类别上的表现也会对最终的宏平均值产生相同的影响。
  • 适用于类别不平衡但不希望少数类别被“淹没”的情况: 当数据集中存在类别不平衡,但你仍然希望模型在少数类别上也能表现良好时,宏平均是一个很好的选择。如果模型在少数类别上的性能很差,宏平均值会明显下降,从而提醒你需要关注这些类别。
  • 对少数类别敏感: 如果少数类别预测错误,宏平均会受到较大影响,因为少数类别和多数类别在计算平均值时权重相同。

示例:

假设有A、B、C三个类别,它们的F1分数分别为0.8、0.9、0.5。

宏F1分数 = (0.8+0.9+0.5)/3=0.733

加权平均(Weighted-average)

加权平均是对所有类别的指标进行加权算术平均,权重通常是每个类别在数据集中所占的样本数量比例。计算步骤如下:

  1. 独立计算每个类别的指标: 同样,首先为每个类别独立计算其指标。
  2. 确定每个类别的权重: 计算每个类别在整个数据集中所占的样本比例。
  3. 加权求和: 将每个类别的指标值乘以其对应的权重,然后将所有加权后的值相加。

加权平均的计算公式为:
加权平均 = ∑ i = 1 n w i ⋅ x i ∑ i = 1 n w i \text{加权平均} = \frac{\sum_{i=1}^{n} w_i \cdot x_i}{\sum_{i=1}^{n} w_i} 加权平均=i=1nwii=1nwixi
其中:

  • x i x_i xi 是第 i i i 个数值,
  • w i w_i wi 是第 i i i 个数值对应的权重,
  • n n n 是数值的总个数。
    公式表示将每个数值与其对应的权重相乘后求和,再除以所有权重的总和。

特点:

  • 考虑类别样本数量: 加权平均会根据每个类别的样本数量来分配权重。样本数量多的类别对最终的加权平均值贡献更大,而样本数量少的类别贡献较小。
  • 反映模型在整体数据集上的表现: 如果你更关心模型在整个数据集上的整体表现,尤其是在类别不平衡的数据集中,加权平均是一个更合适的指标。它能够更好地反映模型在多数类别上的性能,因为这些类别在数据集中占据主导地位。
  • 倾向于多数类别: 如果模型在多数类别上表现良好,即使在少数类别上表现较差,加权平均值也可能看起来不错。

示例:

假设有A、B、C三个类别,F1分数分别为0.8、0.9、0.5,样本数量分别为100、200、50。

总样本数 = 100+200+50=350

A类权重 = 100/350≈0.286

B类权重 = 200/350≈0.571

C类权重 = 50/350≈0.143

加权F1分数 = (0.8×0.286)+(0.9×0.571)+(0.5×0.143)=0.2288+0.5139+0.0715≈0.8142

总结

宏平均和加权平均各有侧重,选择哪种平均方法取决于你对模型性能评估的优先级:

  • 宏平均(Macro-average): 更注重所有类别是否都能得到良好预测,即使是样本量小的少数类别。适用于你希望模型在所有类别上都表现均衡,或者特别关注少数类别性能的场景。
  • 加权平均(Weighted-average): 更注重模型在整体数据分布上的预测准确性。适用于你希望模型在多数类别上表现良好,或者希望评估模型在整个数据集上的综合性能的场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2401922.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

贪心算法应用:装箱问题(FFD问题)详解

贪心算法应用:装箱问题(FFD问题)详解 1. 装箱问题概述 装箱问题(Bin Packing Problem)是计算机科学和运筹学中的一个经典组合优化问题。问题的描述如下: 给定一组物品,每个物品有一定的体积,以及若干容量相同的箱子&#xff0c…

操作系统学习(九)——存储系统

一、存储系统 在操作系统中,存储系统(Storage System) 是计算机系统的核心组成部分之一,它负责数据的存储、组织、管理和访问。 它不仅包括物理设备(如内存、硬盘),还包括操作系统提供的逻辑抽…

服务器安装软件失败或缺依赖怎么办?

服务器在安装软件时失败或提示缺少依赖,是运维中非常常见的问题。这个问题大多发生在 Linux 云服务器环境,原因和解决方法也有共性。以下是详细说明和解决建议: 🧠 一、常见原因分析 问题类型描述🔌 软件源不可用服务器…

006网上订餐系统技术解析:打造高效便捷的餐饮服务平台

网上订餐系统技术解析:打造高效便捷的餐饮服务平台 在数字化生活方式普及的当下,网上订餐系统成为连接餐饮商家与消费者的重要桥梁。该系统以菜品分类、订单管理等模块为核心,通过前台展示与后台录入的分工协作,为管理员和会员提…

[10-2]MPU6050简介 江协科技学习笔记(22个知识点)

1 2 3 欧拉角是描述三维空间中刚体或坐标系之间相对旋转的一种方法。它们由三个角度组成,通常表示为: • 偏航角(Yaw):绕垂直轴(通常是z轴)的旋转,表示偏航方向的变化。 • 俯仰角&a…

Spring Boot 3.X 下Redis缓存的尝试(二):自动注解实现自动化缓存操作

前言 上文我们做了在Spring Boot下对Redis的基本操作,如果频繁对Redis进行操作而写对应的方法显示使用注释更会更高效; 比如: 依之前操作对一个业务进行定入缓存需要把数据拉取到后再定入; 而今天我们可以通过注释的方式不需要额外…

【03】完整开发腾讯云播放器SDK的UniApp官方UTS插件——优雅草上架插件市场-卓伊凡

【03】完整开发腾讯云播放器SDK的UniApp官方UTS插件——优雅草上架插件市场-卓伊凡 一、项目背景与转型原因 1.1 原定计划的变更 本系列教程最初规划是开发即构美颜SDK的UTS插件,但由于甲方公司内部战略调整,原项目被迫中止。考虑到: 技术…

C:\Users\中文名修改为英文名

C:\Users\中文名修改为英文名 背景操作步骤 背景 买了台新电脑,初始化好不知道啥操作把自己的登录用户名改成了中文,有些安装的软件看见有中文直接就水土不服了。 操作步骤 以下称中文用户名为张三。 正常登录张三用户 进入用户管理页面修改用户名&a…

购物商城网站 Java+Vue.js+SpringBoot,包括商家管理、商品分类管理、商品管理、在线客服管理、购物订单模块

购物商城网站 JavaVue.jsSpringBoot,包括商家管理、商品分类管理、商品管理、在线客服管理、购物订单模块 百度云盘链接:https://pan.baidu.com/s/10W0kpwswDSmtbqYFsQmm5w 密码:68jy 摘 要 随着科学技术的飞速发展,各行各业都在…

在word中点击zotero Add/Edit Citation没有反应的解决办法

重新安装了word插件 1.关掉word 2.进入Zotero左上角编辑-引用 3.往下滑找到Microsoft Word,点重新安装加载项

整合swagger,以及Knife4j优化界面

因为是前后端项目&#xff0c;需要前端的参与&#xff0c;所以一个好看的接口文档非常的重要 1、引入依赖 美化插件其中自带swagger的依赖了 <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-openapi3-spring-boot-starter&…

Unity | AmplifyShaderEditor插件基础(第四集:简易shader)

一、&#x1f44b;&#x1f3fb;前言 大家好&#xff0c;我是菌菌巧乐兹~本节内容主要讲一下&#xff0c;第一个用ASE的shader。 我们用通用的光照模版吧。&#xff08;universal-通用/Lit-光照&#xff09; 通用的光照模版 如果你尝试建设了&#xff0c;会发现Universal这个…

linux C语言中的动态库 静态库说明

静态库 gcc -fpic -c add.c sub.c 这个命令之后会得到 add.o 于 sub.o (-c 只编译不链接) ar rcs mymath.a add.o sub.o 将编译好的文件编译成.a静态库用于调用 在使用中 gcc main.c -I../include ../lib/mymarh.a -0 mytest 需要这个函数的声明放在include文件下&#xf…

Flash烧录速度和加载配置速度(纯FPGA ZYNQ)

在工程综合完成或者implement完成后&#xff0c;打开综合设计或者实现设计。 toots--->Edit Device Properties--->打开比特流设置 将bitstream进行压缩 上图中&#xff0c;时钟频率选择的档位有限&#xff0c;最大为66MHZ io的bus width可以设置为x1,x2,x4 vivado在设计…

解构与重构:PLM 系统如何从管理工具进化为创新操作系统?

在智能汽车、工业物联网等新兴领域的冲击下&#xff0c;传统产品生命周期管理&#xff08;PLM&#xff09;系统正在经历前所未有的范式转换。当某头部车企因 ECU 软件与硬件模具版本失配导致 10 万辆智能电车召回&#xff0c;损失高达 6 亿美元时&#xff0c;这场危机不仅暴露了…

Redis:介绍和认识,通用命令,数据类型和内部编码,单线程模型

介绍和认识 Redis是一个基于内存的&#xff0c;高性能的&#xff0c;支持许多数据类型的NoSQL数据库&#xff0c;可以持久化&#xff0c;也支持分布式。 在许多的互联网产品中&#xff0c;对于数据库的访问速度要求很高&#xff0c;例如Mysql数据库无法满足其要求&#xff0c…

嵌入式开发之STM32学习笔记day20

STM32F103C8T6 PWR电源控制 1 PWR简介 PWR&#xff08;Power Control&#xff09;电源控制单元是STM32微控制器中一个重要的组成部分&#xff0c;它负责管理系统的电源管理功能&#xff0c;以优化功耗并提高效率。PWR负责管理STM32内部的电源供电部分&#xff0c;可以实现可编…

专业级PDF转CAD解决方案

PDF 文件因其出色的便携性和稳定性&#xff0c;已成为许多用户的首选格式。但在涉及图像编辑或精细调整时&#xff0c;CAD 文件显然更具优势。 这款 CAD 图纸转换工具&#xff0c;界面清爽、操作直观&#xff0c;是处理图纸文件的理想助手。 它不仅支持不同版本 CAD 文件之间…

STM32 智能小车项目 两路红外循迹模块原理与实战应用详解

在嵌入式系统、机器人、智能设备等场景中&#xff0c;红外反射型光电传感器 被广泛应用于黑白识别、障碍检测、物体计数、位置判断等任务。其中&#xff0c;RPR220 是一款性能稳定、体积小巧的红外光电收发管&#xff0c;本文将详细介绍其工作原理、引脚参数、接线说明以及典型…

SSL安全证书怎么安装?

SSI并非一个标准的、广为人知的安全证书类型&#xff0c;通常网站安装的是SSL/TLS证书&#xff0c;用于加密网站和用户浏览器之间的通信&#xff0c;保障数据传输安全。以下以安装SSL/TLS证书为例&#xff0c;介绍网站安装证书的步骤&#xff1a; 一、证书申请与获取 选择证书…