实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.12 R语言解题

news2025/6/6 14:43:56

本文是实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.12 R语言解题。主要涉及线性回归、回归的显著性、残差分析。

10-12

vial <- seq(1, 12, 1)

Viscosity <- c(26,24,175,160,163,55,62,100,26,30,70,71)

Temperature <- c(1.0,1.0,1.5,1.5,1.5,0.5,1.5,0.5,1.0,0.5,1.0,0.5)

Catalyst <- c(1.0,1.0,4.0,4.0,4.0,2.0,2.0,3.0,1.5,1.5,2.5,2.5)

visc <- data.frame(vial, Viscosity, Temperature,Catalyst)

visc

lm.fit <- lm(Viscosity ~ (Temperature)^2+(Catalyst)^2, data=visc)

summary (lm.fit)

> summary (lm.fit)

Call:

lm.default(formula = Viscosity ~ (Temperature)^2 + (Catalyst)^2,

    data = visc)

Residuals:

     Min       1Q   Median       3Q      Max

-14.0097  -4.9064   0.9614   4.7104  12.6390

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)  -49.635      7.988  -6.214 0.000156 ***

Temperature   18.355      7.615   2.410 0.039218 * 

Catalyst      46.116      2.887  15.975 6.52e-08 ***

---

Signif. codes: 

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.483 on 9 degrees of freedom

Multiple R-squared:  0.9771,      Adjusted R-squared:  0.972

F-statistic: 191.8 on 2 and 9 DF,  p-value: 4.178e-08

summary (aov(lm.fit))

> summary (aov(lm.fit))

            Df Sum Sq Mean Sq F value   Pr(>F)   

Temperature  1  11552   11552   128.5 1.25e-06 ***

Catalyst     1  22950   22950   255.2 6.52e-08 ***

Residuals    9    809      90                    

---

Signif. codes: 

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

op <- par(mfrow=c(2,2), las=1)

plot(lm.fit)

par(op)

library(car)

carPlots(lm.fit)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2401771.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

告别局域网:实现NASCab云可云远程自由访问

文章目录 前言1. 检查NASCab本地端口2. Qindows安装Cpolar3. 配置NASCab远程地址4. 远程访问NASCab小结 5. 固定NASCab公网地址6. 固定地址访问NASCab 前言 在数字化生活日益普及的今天&#xff0c;拥有一个属于自己的私有云存储&#xff08;如NASCab云可云&#xff09;已成为…

Python实现markdown文件转word

1.markdown内容如下&#xff1a; 2.转换后的内容如下&#xff1a; 3.附上代码&#xff1a; import argparse import os from markdown import markdown from bs4 import BeautifulSoup from docx import Document from docx.shared import Inches from docx.enum.text import …

NLP学习路线图(十七):主题模型(LDA)

在浩瀚的文本海洋中航行&#xff0c;人类大脑天然具备发现主题的能力——翻阅几份报纸&#xff0c;我们迅速辨别出"政治"、"体育"、"科技"等板块&#xff1b;浏览社交媒体&#xff0c;我们下意识区分出美食分享、旅行见闻或科技测评。但机器如何…

综采工作面电控4X型铜头连接器 conm/4x100s

综采工作面作为现代化煤矿生产的核心区域&#xff0c;其设备运行的稳定性和安全性直接关系到整个矿井的生产效率。在综采工作面的电气控制系统中&#xff0c;电控连接器扮演着至关重要的角色&#xff0c;而4X型铜头连接器CONM/4X100S作为其中的关键部件&#xff0c;其性能优劣直…

用ApiFox MCP一键生成接口文档,做接口测试

日常开发过程中&#xff0c;尤其是针对长期维护的老旧项目&#xff0c;许多开发者都会遇到一系列相同的困扰&#xff1a;由于项目早期缺乏严格的开发规范和接口管理策略&#xff0c;导致接口文档缺失&#xff0c;甚至连基本的接口说明都难以找到。此外&#xff0c;由于缺乏规范…

在compose中的Canvas用kotlin显示多数据波形闪烁的问题

在compose中的Canvas显示多数据波形闪烁的问题&#xff1a;当在Canvas多组记录波形数组时&#xff0c;从第一组开始记录多次显示&#xff0c;如图&#xff0c;当再次回到第一次记录位置再显示时&#xff0c;波形出现闪烁。 原码如下&#xff1a; data class DcWaveForm(var b…

【学习笔记】MIME

文章目录 1. 引言2. MIME 构成Content-Type&#xff08;内容类型&#xff09;Content-Transfer-Encoding&#xff08;传输编码&#xff09;Multipart&#xff08;多部分&#xff09; 3. 常见 MIME 类型 1. 引言 早期的电子邮件只能发送 ASCII 文本&#xff0c;无法直接传输二进…

单北斗定位芯片AT9880B

AT9880B 是面向北斗卫星导航系统的单模接收机单芯片&#xff08;SOC&#xff09;&#xff0c;内部集成射频前端、数字基带处理单元、北斗多频信号处理引擎及电源管理模块&#xff0c;支持北斗二号与三号系统的 B1I、B1C、B2I、B3I、B2a、B2b 频点信号接收。 主要特征 支持北斗二…

旅游微信小程序制作指南

想创建旅游微信小程序吗&#xff1f;知道旅游业企业怎么打造自己的小程序吗&#xff1f;这里有零基础小白也能学会的教程&#xff0c;教你快速制作旅游类微信小程序&#xff01; 旅游行业能不能开发微信小程序呢&#xff1f;答案是肯定的。微信小程序对旅游企业来说可是个宝&am…

Ubuntu ifconfig 查不到ens33网卡

BUG&#xff1a;ifconfig查看网络配置信息&#xff1a; 终端输入以下命令&#xff1a; sudo service network-manager stop sudo rm /var/lib/NetworkManager/NetworkManager.state sudo service network-manager start - service network - manager stop &#xff1a;停止…

【python深度学习】Day 45 Tensorboard使用介绍

知识点&#xff1a; tensorboard的发展历史和原理tensorboard的常见操作tensorboard在cifar上的实战&#xff1a;MLP和CNN模型 效果展示如下&#xff0c;很适合拿去组会汇报撑页数&#xff1a; 作业&#xff1a;对resnet18在cifar10上采用微调策略下&#xff0c;用tensorboard监…

【图像处理入门】5. 形态学处理:腐蚀、膨胀与图像的形状雕琢

摘要 形态学处理是基于图像形状特征的处理技术,在图像分析中扮演着关键角色。本文将深入讲解腐蚀、膨胀、开闭运算等形态学操作的原理,结合OpenCV代码展示其在去除噪声、提取边缘、分割图像等场景的应用,带你掌握通过结构元素雕琢图像形状的核心技巧。 一、形态学处理:基…

并行智算MaaS云平台:打造你的专属AI助手,开启智能生活新纪元

目录 引言&#xff1a;AI助手&#xff0c;未来生活的必备伙伴 并行智算云&#xff1a;大模型API的卓越平台 实战指南&#xff1a;调用并行智算云API打造个人AI助手 3.1 准备工作 3.2 API调用示例 3.3 本地智能AI系统搭建 3.4 高级功能实现 并行智算云的优势 4.1 性能卓越…

Day45 Python打卡训练营

知识点回顾&#xff1a; 1. tensorboard的发展历史和原理 2. tensorboard的常见操作 3. tensorboard在cifar上的实战&#xff1a;MLP和CNN模型 一、tensorboard的基本操作 1.1 发展历史 TensorBoard 是 TensorFlow 生态中的官方可视化工具&#xff08;也可无缝集成 PyTorch&…

2025年目前最新版本Android Studio自定义xml预览的屏幕分辨率

一、前言 在实际开发项目当中&#xff0c;我们的设备的分辨率可能会比较特殊&#xff0c;AS并没有自带这种屏幕分辨率的设备&#xff0c;但是我们又想一边编写XML界面&#xff0c;一边实时看到较为真实的预览效果&#xff0c;该怎么办呢&#xff1f;在早期的AS版本中&#xff…

黑马Java面试笔记之 并发编程篇(线程池+使用场景)

一. 线程池的核心参数&#xff08;线程池的执行原理&#xff09; 线程池核心参数主要参考ThreadPoolExecutor这个类的7个参数的构造函数 corePoolSize 核心线程数目 maximumPoolSize 最大线程数目 (核心线程救急线程的最大数目) keepAliveTime 生存时间 - 救急线程的生存时…

【AI学习】KV-cache和page attention

目录 带着问题学AI KV-cache KV-cache是什么&#xff1f; 之前每个token生成的K V矩阵给缓存起来有什么用&#xff1f; 为啥缓存K、V,没有缓存Q? KV-cache为啥在训练阶段不需要&#xff0c;只在推理阶段需要&#xff1f; KV cache的过程图解 阶段一&#xff1a;KV cac…

七彩喜智慧养老平台:科技赋能下的市场蓝海,满足多样化养老服务需求

在人口老龄化加速与科技快速发展的双重驱动下&#xff0c;七彩喜智慧养老平台正成为破解养老服务供需矛盾、激活银发经济的核心引擎。 这一领域依托物联网、人工智能、大数据等技术&#xff0c;构建起覆盖居家、社区、机构的多层次服务体系。 既满足老年人多样化需求&#xf…

《Pytorch深度学习实践》ch8-多分类

------B站《刘二大人》 1.Softmax Layer 在多分类问题中&#xff0c;输出的是每类的概率&#xff1a; 计算公式&#xff1a;保证了每类概率大于 0 &#xff0c;又由保证了概率之和为 1&#xff1b; 举例如下&#xff1a; 2.Cross Entropy 计算损失&#xff1a; y np.array…

国产录播一体机:科技赋能智慧教育信息化

在数字化时代&#xff0c;教育正经历着前所未有的变革。国产工控机作为信息化教育的核心载体&#xff0c;正在重新定义学习方式&#xff0c;赋能教师与学生&#xff0c;打造高效、互动、智能的教学环境&#xff0c;让我们一起感受科技与教育的深度融合&#xff01;高能计算机推…