1.RNN从零开始实现
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
#8.3.4节
#batch_size:每个小批量中子序列样本的数目,num_steps:每个子序列中预定义的时间步数
#load_data_time_machine函数:返回数据迭代器和词表
batch_size,num_steps = 32,35
train_iter,vocab = d2l.load_data_time_machine(batch_size,num_steps)
#此向量是原始词元的一个独热向量。 索引为0和2的独热向量如下所示:
F.one_hot(torch.tensor([0,2]),len(vocab))
#8.5.1独热编码
#one_hot函数将这样一个小批量数据转换成三维张量, 张量的最后一个维度等于词表大小(len(vocab))。
#经常转换输入的维度,以便获得形状为 (时间步数,批量大小,词表大小)的输出
X = torch.arange(10).reshape((2,5))
F.one_hot(X.T,28).shape
#8.5.2初始化循环神经网络模型的模型参数。
# 隐藏单元数num_hiddens是一个可调的超参数。
#当训练语言模型时,输入和输出来自相同的词表。因此,它们具有相同的维度,即词表的大小。
def get_params(vocab_size,num_hiddens,device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape,device=device)*0.01
#隐藏层参数
W_xh = normal((num_inputs,num_hiddens))
W_hh = normal((num_hiddens,num_hiddens))
b_h = torch.zeros(num_hiddens,device=device)
#输出层参数
W_hq = normal((num_hiddens,num_outputs))
b_q = torch.zeros(num_outputs,device=device)
#附加梯度
params = [W_xh,W_hh,b_h,W_hq,b_q]
for param in params:
param.requires_grad_(True)
return params
#8.5.3循环神经网络模型
#init_rnn_state函数在初始化时返回隐状态,返回一个张量,全用0填充,形状为(批量大小,隐藏单元数)
def init_rnn_state(batch_size,num_hiddens,device):
return (torch.zeros((batch_size,num_hiddens),device),)
#rnn函数定义了如何在一个时间步内计算隐状态和输出。
#循环神经网络模型通过inputs最外层的维度实现循环,以便逐时间步更新小批量数据的隐状态.
def rnn(inputs,state,params):
#input的形状:(时间步数量,批量大小,词表大小)
W_xh,W_hh,b_h,W_hq,b_q = params
H,=state
outputs = []
#X的形状:(批量大小,词表大小)
for X in inputs:
H = torch.tanh(torch.mm(X,W_xh)+torch.mm(H,W_hh)+b_h)
Y = torch.mm(H,W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs,dim=0),(H,)
#定义了所有需要的函数之后,创建类来包装这些函数,并存储从零开始实现的循环神经网络模型的参数。
class RNNModelScratch:#@save
"""从零开始实现的循环神经网络模型"""
def __init__(self,vocab_size,num_hiddens,device,
get_params,init_state,forward_fn):
self.vocab_size,self.num_hiddens = vocab_size,num_hiddens
self.params = get_params(vocab_size,num_hiddens,device)
self.init_state,self.forward_fn = init_state,forward_fn
def __call__(self, X, state):
X = F.one_hot(X.T,self.vocab_size).type(torch.float32)
return self.forward_fn(X,state,self.params)
def begin_state(self,batch_size,device):
return self.init_state(batch_size,self.num_hiddens,device)
#检查输出是否具有正确的形状。例如,隐状态的维数是否保持不变。
num_hiddens = 512
net = RNNModelScratch(len(vocab),num_hiddens,d2l.try_gpu(),get_params,
init_rnn_state,rnn)
state = net.begin_state(X.shape[0],d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()),state)
Y.shape,len(new_state),new_state[0].shape
#输出形状是(时间步数times,批量大小,词表大小),而隐状态形状保持不变,即(批量大小,隐藏单元数)
#8.5.4.预测
#首先定义预测函数来生成prefix之后的新字符,其中的prefix是一个用户提供的包含多个字符的字符串
#循环遍历prefix中的开始字符时,不断将隐状态传递到下一个时间步,但不生成任何输出(预热(warm-up)期)
def predict_ch8(prefix,num_preds,net,vocab,device):#@save
"""在prefix后面生成新字符"""
state = net.begin_state(batch_size=1,device=device)
outputs = [vocab[prefix[0]]]
get_input = lambda : torch.tensor([outputs[-1]],device=device).reshape((1,1))
for y in prefix[1:]: #预热期
_,state = net(get_input(),state)
outputs.append(vocab[y])
for _ in range(num_preds): #预测num_preds步
y,state = net(get_input(),state)
outputs.append(int(y.argmax(dim=1).reshape(1)))
return ''.join([vocab.idx_to_token[i] for i in outputs])
#测试predict_ch8函数。将前缀指定为time traveller,并生成10个后续字符。鉴于还没训练网络,会生成荒谬的预测结果。
predict_ch8('time traveller',10,net,vocab,d2l.try_gpu())
#8.5.5. 梯度截断
def grad_clipping(net,theta): #@save
"""梯度截断"""
if isinstance(net,nn.Module):
params = [p for p in net.parameters() if p.requires_grad]
else:
params = net.params
norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
#8.5.6.训练
#@save
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
"""训练网络一个迭代周期(定义见第8章)"""
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2) # 训练损失之和,词元数量
for X, Y in train_iter:
if state is None or use_random_iter:
# 在第一次迭代或使用随机抽样时初始化state
state = net.begin_state(batch_size=X.shape[0], device=device)
else:
if isinstance(net, nn.Module) and not isinstance(state, tuple):
# state对于nn.GRU是个张量
state.detach_()
else:
# state对于nn.LSTM或对于我们从零开始实现的模型是个张量
for s in state:
s.detach_()
y = Y.T.reshape(-1)
X, y = X.to(device), y.to(device)
y_hat, state = net(X, state)
l = loss(y_hat, y.long()).mean()
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.backward()
grad_clipping(net, 1)
updater.step()
else:
l.backward()
grad_clipping(net, 1)
# 因为已经调用了mean函数
updater(batch_size=1)
metric.add(l * y.numel(), y.numel())
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
#@save
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
use_random_iter=False):
"""训练模型(定义见第8章)"""
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
legend=['train'], xlim=[10, num_epochs])
# 初始化
if isinstance(net, nn.Module):
updater = torch.optim.SGD(net.parameters(), lr)
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
# 训练和预测
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(
net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
print(predict('time traveller'))
animator.add(epoch + 1, [ppl])
print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
print(predict('time traveller'))
print(predict('traveller'))
#因为数据集中只使用了10000个词元,所以模型需要更多的迭代周期来更好地收敛。
num_epochs,lr = 500,1
train_ch8(net,train_iter,vocab,lr,num_epochs,d2l.try_gpu())
#检查一下使用随机抽样方法的结果
net = RNNModelScratch(len(vocab),num_hiddens,d2l.try_gpu(),get_params,
init_rnn_state,rnn)
train_ch8(net,train_iter,vocab,lr,num_epochs,d2l.try_gpu(),
use_random_iter=True)
Traceback (most recent call last):
File "F:\doctoral_learning\deep_learning_test\Limu_allTest\Rnn-net\main.py", line 83, in <module>
state = net.begin_state(X.shape[0],d2l.try_gpu())
File "F:\doctoral_learning\deep_learning_test\Limu_allTest\Rnn-net\main.py", line 77, in begin_state
return self.init_state(batch_size,self.num_hiddens,device)
File "F:\doctoral_learning\deep_learning_test\Limu_allTest\Rnn-net\main.py", line 49, in init_rnn_state
return (torch.zeros((batch_size,num_hiddens),device),)
TypeError: zeros() received an invalid combination of arguments - got (tuple, torch.device), but expected one of:
* (tuple of ints size, *, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad)
* (tuple of ints size, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad)
太麻烦了,不改了。
2.RNN的简洁实现
#8.6.循环神经网络的简洁实现
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size,num_steps = 32,35
train_iter,vocab = d2l.load_data_time_machine(batch_size,num_steps)
#构造一个具有256个隐藏单元的单隐藏层的循环神经网络层rnn_layer
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab),num_hiddens)
#使用张量来初始化隐状态,它的形状是(隐藏层数,批量大小,隐藏单元数)。
state = torch.zeros((1,batch_size,num_hiddens))
print(state.shape)
#通过一个隐状态和一个输入,我们就可以用更新后的隐状态计算输出。
#rnn_layer的“输出”(Y)不涉及输出层的计算:指每个时间步的隐状态,这些隐状态可以用作后续输出层的输入。
X = torch.rand(size=(num_steps,batch_size,len(vocab)))
Y,state_new = rnn_layer(X,state)
print(Y.shape,state_new.shape)
#与 8.5节类似,为一个完整的循环神经网络模型定义了一个RNNModel类。
#注意,rnn_layer只包含隐藏的循环层,还需要创建一个单独的输出层。
class RNNModel(nn.Module):
"""循环神经网络模型"""
def __init__(self,run_layer,vocab_size,**kwargs):
super(RNNModel,self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.num_hiddens = self.rnn.hidden_size
#如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
if not self.rnn.bidirectional:
self.num_directions = 1
self.linear = nn.Linear(self.num_hiddens ,self.vocab_size)
else:
self.num_directions = 2
self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
def forward(self,inputs,state):
X = F.one_hot(inputs.T.long(),self.vocab_size)
X = X.to(torch.float32)
Y,state = self.rnn(X,state)
#全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
output = self.linear(Y.reshape((-1,Y.shape[-1])))
return output,state
def begin_state(self,device,batch_size=1):
if not isinstance(self.rnn,nn.LSTM):
#nn.GRU以张量作为隐状态
return torch.zeros((self.num_directions * self.rnn.num_layers,
batch_size,self.num_hiddens),
device = device)
else:
#nn.LSTM以元组作为隐状态
return (torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size,self.num_hiddens),device = device),
torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size,self.num_hiddens),device = device))
#在训练模型之前,基于一个具有随机权重的模型进行预测。
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
print(d2l.predict_ch8('time traveller',10,net,vocab,device))
#这种模型根本不能输出好的结果。接下来,使用 8.5节定义的超参数调用train_ch8,并且使用高级API训练模型。
num_epochs,lr = 500,1
print(d2l.train_ch8(net,train_iter,vocab,lr,num_epochs,device))
d2l.plt.show()