DAY 43 复习日
作业:
kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化
进阶:并拆分成多个文件
我选择的是music_instruments 链接:Musical Instruments (kaggle.com)
#导包
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os
import warnings
warnings.filterwarnings("ignore")
# 设置随机种子确保结果可复现
torch.manual_seed(42)
np.random.seed(42)
# 数据预处理
transform = transforms.Compose([
transforms.Resize((64, 64)), # 调整图像大小
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载自定义数据集
dataset_path = r"F:\Program Files\MyPythonProjects\day43\music_instruments"
dataset = ImageFolder(root=dataset_path, transform=transform)
# 划分训练集和测试集
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
# 定义类别名称
classes = ('accordion', 'banjo', 'drum', 'flute', 'guitar',
'harmonica', 'saxophone', 'sitar', 'tabla', 'violin')
# 定义一个简单的CNN模型(调整输出类别数为10)
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(128 * 8 * 8, 512)
self.fc2 = nn.Linear(512, len(classes))
def forward(self, x):
x = self.pool(F.relu(self.conv1(x))) # 32x32
x = self.pool(F.relu(self.conv2(x))) # 16x16
x = self.pool(F.relu(self.conv3(x))) # 8x8
x = x.view(-1, 128 * 8 * 8)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 初始化模型
model = SimpleCNN()
print("模型已创建")
# 使用GPU或CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# 训练模型
def train_model(model, epochs=10):
trainloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=32,
shuffle=True,
num_workers=2
)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9:
print(f'[{epoch + 1}, {i + 1}] 损失: {running_loss / 10:.3f}')
running_loss = 0.0
print("训练完成")
# 训练或加载模型
try:
model.load_state_dict(torch.load('music_instruments_cnn.pth'))
print("已加载预训练模型")
except:
print("无法加载预训练模型,使用未训练模型或训练新模型")
train_model(model, epochs=10)
torch.save(model.state_dict(), 'music_instruments_cnn.pth')
# 设置模型为评估模式
model.eval()
# Grad-CAM实现
class GradCAM:
def __init__(self, model, target_layer):
self.model = model
self.target_layer = target_layer
self.gradients = None
self.activations = None
self.register_hooks()
def register_hooks(self):
def forward_hook(module, input, output):
self.activations = output.detach()
def backward_hook(module, grad_input, grad_output):
self.gradients = grad_output[0].detach()
self.target_layer.register_forward_hook(forward_hook)
self.target_layer.register_backward_hook(backward_hook)
def generate_cam(self, input_image, target_class=None):
model_output = self.model(input_image)
if target_class is None:
target_class = torch.argmax(model_output, dim=1).item()
self.model.zero_grad()
one_hot = torch.zeros_like(model_output)
one_hot[0, target_class] = 1
model_output.backward(gradient=one_hot)
gradients = self.gradients
activations = self.activations
weights = torch.mean(gradients, dim=(2, 3), keepdim=True)
cam = torch.sum(weights * activations, dim=1, keepdim=True)
cam = F.relu(cam)
cam = F.interpolate(cam, size=(64, 64), mode='bilinear', align_corners=False)
cam = cam - cam.min()
cam = cam / cam.max() if cam.max() > 0 else cam
return cam.cpu().squeeze().numpy(), target_class
# 可视化函数
def tensor_to_np(tensor):
img = tensor.cpu().numpy().transpose(1, 2, 0)
mean = np.array([0.5, 0.5, 0.5])
std = np.array([0.5, 0.5, 0.5])
img = std * img + mean
img = np.clip(img, 0, 1)
return img
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False
# 选择一个测试图像
idx = 10
image, label = test_dataset[idx]
print(f"选择的图像类别: {classes[label]}")
# 添加批次维度并移动到设备
input_tensor = image.unsqueeze(0).to(device)
# 初始化Grad-CAM(选择最后一个卷积层)
grad_cam = GradCAM(model, model.conv3)
# 生成热力图
heatmap, pred_class = grad_cam.generate_cam(input_tensor)
# 可视化
plt.figure(figsize=(12, 4))
# 原始图像
plt.subplot(1, 3, 1)
plt.imshow(tensor_to_np(image))
plt.title(f"原始图像: {classes[label]}")
plt.axis('off')
# 热力图
plt.subplot(1, 3, 2)
plt.imshow(heatmap, cmap='jet')
plt.title(f"Grad-CAM热力图: {classes[pred_class]}")
plt.axis('off')
# 叠加的图像
plt.subplot(1, 3, 3)
img = tensor_to_np(image)
heatmap_resized = np.uint8(255 * heatmap)
heatmap_colored = plt.cm.jet(heatmap_resized)[:, :, :3]
superimposed_img = heatmap_colored * 0.4 + img * 0.6
plt.imshow(superimposed_img)
plt.title("叠加热力图")
plt.axis('off')
plt.tight_layout()
plt.savefig('grad_cam_result.png')
plt.show()
print("Grad-CAM可视化完成。已保存为grad_cam_result.png")
@浙大疏锦行