[yolov11改进系列]基于yolov11使用FasterNet替换backbone用于轻量化网络的python源码+训练源码

news2025/7/25 9:40:54

【FasterNet介绍】
为了设计快速神经网络,许多工作都集中在减少浮点运算的数量(FLOPs)上。 然而,我们观察到FLOPs的减少并不一定会导致延迟的类似程度的减少。 这主要源于低效率的每秒浮点运算(FLOPS)。 为了实现更快的网络,我们回顾了流行的操作,并证明如此低的FLOPS主要是由于操作频繁的内存访问,特别是深度卷积。 因此,我们提出了一种新的部分卷积(PConv),通过同时减少冗余计算和内存访问,可以更有效地提取空间特征。 在Ponv的基础上,我们进一步提出了FasterNet,这是一个新的神经网络家族,它在各种设备上获得了比其他网络更高的运行速度,而不影响各种视觉任务的准确性。 例如,在ImageNet1K上,我们的微型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileVit-XXS快3.1×、3.1×和2.5×,同时精度提高2.9%。 我们的大型FasterNet-L实现了令人印象深刻的83.5%的Top-1准确率,与新兴的Swin-B不相上下,同时在GPU上提高了49%的推断吞吐量,并在CPU上节省了42%的计算时间。

1. FasterNet

本文思考了一个问题:怎样才能更快?之前的工作大多使用FLOPs来表示神经网络的快慢,但是某些操作(如DWConv)实际运行并不快,这主要是因为频繁的内存访问。本文提出了新的见解:设计一个低FLOPs高FLOPS的操作,这样可以加快网络运行速度。由此,本文作者提出了一个“T型”的卷积——PConv,主要思想是DWConv虽然FLOPs小,但是由于频繁的内存访问导致FLOPS也小。由于网络存在冗余通道,那我是不是可以设计一个网络只用一部分去做空间计算,作者就尝试了这一想法,发现效果非常好,速度快,精度高。具体的操作如图5所示:



基于PConv和传统的分层Transformer,本文提出了一个新的网络架构——FasterNet,结构图如图所示:

​FasterNet的网络结构借鉴CNN的设计理念,通过提出的PConv减少推理时的计算和内存成本,同时减少通道数并增加部分比例,降低延迟,并通过后续的 PWConv 来弥补特征信息可能缺失的问题,提高了准确性。

 【yolov11框架介绍】

2024 年 9 月 30 日,Ultralytics 在其活动 YOLOVision 中正式发布了 YOLOv11。YOLOv11 是 YOLO 的最新版本,由美国和西班牙的 Ultralytics 团队开发。YOLO 是一种用于基于图像的人工智能的计算机模

Ultralytics YOLO11 概述

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

Key Features 主要特点

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务性能。
  • 针对效率和速度进行优化:YOLO11 引入了精致的架构设计和优化的训练管道,提供更快的处理速度并保持准确性和性能之间的最佳平衡。
  • 使用更少的参数获得更高的精度:随着模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),同时使用的参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台以及支持NVIDIA GPU的系统,确保最大的灵活性。
  • 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿态估计还是定向对象检测 (OBB),YOLO11 旨在应对各种计算机视觉挑战。

​​​

与之前的版本相比,Ultralytics YOLO11 有哪些关键改进?

Ultralytics YOLO11 与其前身相比引入了多项重大进步。主要改进包括:

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测。
  • 优化的效率和速度:精细的架构设计和优化的训练管道可提供更快的处理速度,同时保持准确性和性能之间的平衡。
  • 使用更少的参数获得更高的精度:YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以跨各种环境部署,包括边缘设备、云平台和支持NVIDIA GPU的系统。
  • 支持的任务范围广泛:YOLO11 支持多种计算机视觉任务,例如对象检测、实例分割、图像分类、姿态估计和定向对象检测 (OBB)

【测试环境】

windows10 x64

ultralytics==8.3.0

torch==2.3.1

【改进流程】

1. 新增FasterNet.py实现模块(代码太多,核心模块源码请参考改进步骤.docx)然后在同级目录下面创建一个__init___.py文件写代码

from .FasterNet import *

2. 文件修改步骤

修改tasks.py文件

创建模型配置文件

yolo11-FasterNet.yaml内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# 下面 [-1, 1, FasterNet, [0.25]] 参数位置的0.25是通道放缩的系数, YOLOv11N是0.25 YOLOv11S是0.5 YOLOv11M是1. YOLOv11l是1 YOLOv11是1.5大家根据自己训练的YOLO版本设定即可.
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, FasterNet, [0.25]] # 0-4 P1/2 这里是四层
  - [-1, 1, SPPF, [1024, 5]] # 5
  - [-1, 2, C2PSA, [1024]] # 6

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 3], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 9

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 2], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 12 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 15 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 6], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 18 (P5/32-large)

  - [[12, 15, 18], 1, Detect, [nc]] # Detect(P3, P4, P5)
3. 验证集成

git搜futureflsl/yolo-improve获取源码,然后使用新建的yaml配置文件启动训练任务:

from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('yolo11-FasterNet.yaml')  # build from YAML and transfer weights
        # Train the model
    results = model.train(data='coco128.yaml',epochs=100, imgsz=640, batch=8, device=0, workers=1, save=True,resume=False)

成功集成后,训练日志中将显示FasterNet模块的初始化信息,表明已正确加载到模型中。

【训练说明】

第一步:首先安装好yolov11必要模块,可以参考yolov11框架安装流程,然后卸载官方版本pip uninstall ultralytics,最后安装改进的源码pip install .
第二步:将自己数据集按照dataset文件夹摆放,要求文件夹名字都不要改变
第三步:分别打开train.py,coco128.yaml和模型参数yaml文件修改必要的参数,最后执行python train.py即可训练

【提供文件】

├── [官方源码]ultralytics-8.3.0.zip
├── train/
│   ├── coco128.yaml
│   ├── dataset/
│   │   ├── train/
│   │   │   ├── images/
│   │   │   │   ├── firc_pic_1.jpg
│   │   │   │   ├── firc_pic_10.jpg
│   │   │   │   ├── firc_pic_11.jpg
│   │   │   │   ├── firc_pic_12.jpg
│   │   │   │   ├── firc_pic_13.jpg
│   │   │   ├── labels/
│   │   │   │   ├── classes.txt
│   │   │   │   ├── firc_pic_1.txt
│   │   │   │   ├── firc_pic_10.txt
│   │   │   │   ├── firc_pic_11.txt
│   │   │   │   ├── firc_pic_12.txt
│   │   │   │   ├── firc_pic_13.txt
│   │   └── val/
│   │       ├── images/
│   │       │   ├── firc_pic_100.jpg
│   │       │   ├── firc_pic_81.jpg
│   │       │   ├── firc_pic_82.jpg
│   │       │   ├── firc_pic_83.jpg
│   │       │   ├── firc_pic_84.jpg
│   │       ├── labels/
│   │       │   ├── firc_pic_100.txt
│   │       │   ├── firc_pic_81.txt
│   │       │   ├── firc_pic_82.txt
│   │       │   ├── firc_pic_83.txt
│   │       │   ├── firc_pic_84.txt
│   ├── train.py
│   ├── yolo11-FasterNet.yaml
│   └── 训练说明.txt
├── [改进源码]ultralytics-8.3.0.zip
├── 改进原理.docx
└── 改进流程.docx

 【常见问题汇总】
问:为什么我训练的模型epoch显示的map都是0或者map精度很低?
回答:由于源码改进过,因此不能直接从官方模型微调,而是从头训练,这样学习特征能力会很弱,需要训练很多epoch才能出现效果。此外由于改进的源码框架并不一定能够保证会超过官方精度,而且也有可能会存在远远不如官方效果,甚至精度会很低。这说明改进的框架并不能取得很好效果。所以说对于框架改进只是提供一种可行方案,至于改进后能不能取得很好map还需要结合实际训练情况确认,当然也不排除数据集存在问题,比如数据集比较单一,样本分布不均衡,泛化场景少,标注框不太贴合标注质量差,检测目标很小等等原因
【重要说明】
我们只提供改进框架一种方案,并不保证能够取得很好训练精度,甚至超过官方模型精度。因为改进框架,实际是一种比较复杂流程,包括框架原理可行性,训练数据集是否合适,训练需要反正验证以及同类框架训练结果参数比较,这个是十分复杂且漫长的过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2399089.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一周学会Pandas2之Python数据处理与分析-Pandas2数据绘图与可视化

锋哥原创的Pandas2 Python数据处理与分析 视频教程: 2025版 Pandas2 Python数据处理与分析 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili Pandas 集成了 Matplotlib,提供了简单高效的绘图接口,使数据可视化变得直观便捷。本指南将详…

企业级安全实践:SSL/TLS 加密与权限管理(一)

引言 ** 在数字化转型的浪潮中,企业对网络的依赖程度与日俱增,从日常办公到核心业务的开展,都离不开网络的支持。与此同时,网络安全问题也日益严峻,成为企业发展过程中不可忽视的重要挑战。 一旦企业遭遇网络安全事…

2025——》VSCode Windows 最新安装指南/VSCode安装完成后如何验证是否成功?2025最新VSCode安装配置全攻略

1.VSCode Windows 最新安装指南: 以下是 2025 年 Windows 系统下安装 Visual Studio Code(VSCode)的最新指南,结合官方文档与实际操作经验整理而成: 一、下载官方安装包: 1.访问官网: 打开浏览器,进入 VSCode 官方下载页面https://code.visualstudio.com/Download 2…

【MATLAB代码】制导——三点法,二维平面下的例程|运动目标制导,附完整源代码

三点法制导是一种导弹制导策略,主要用于确保导弹能够准确追踪并击中移动目标。该方法通过计算导弹、目标和制导站之间的相对位置关系,实现对目标的有效制导。 本文给出MATLAB下的三点法例程,模拟平面上捕获运动目标的情况订阅专栏后可直接查看源代码,粘贴到MATLAB空脚本中即…

如何爬取google应用商店的应用分类呢?

以下是爬取Google Play商店应用包名(package name)和对应分类的完整解决方案,采用ScrapyPlaywright组合应对动态渲染页面,并处理反爬机制: 完整爬虫实现 1. 安装必要库 # 卸载现有安装pip uninstall playwright scrapy-playwright -y# 重新…

SQL Relational Algebra(数据库关系代数)

目录 What is an “Algebra” What is Relational Algebra? Core Relational Algebra Selection Projection Extended Projection Product(笛卡尔积) Theta-Join Natural Join Renaming Building Complex Expressions Sequences of Assignm…

智能工业时代:工业场景下的 AI 大模型体系架构与应用探索

自工业革命以来,工业生产先后经历了机械化、电气化、自动化、信息化的演进,正从数字化向智能化迈进,人工智能技术是新一轮科技革命和产业变革的重要驱动力量,AI 大模型以其强大的学习计算能力掀开了人工智能通用化的序幕&#xff…

易语言使用OCR

易语言使用OCR 用易语言写个脚本,需要用到OCR,因此我自己封装了一个OCR到DLL。 http://lkinfer.1it.top/ 视频演示:https://www.bilibili.com/video/BV1Zg7az2Eq3/ 支持易语言、c、c#使用,平台限制:window 10 介绍…

C++和C#界面开发方式的全面对比

文章目录 C界面开发方式1. **MFC(Microsoft Foundation Classes)**2. **Qt**3. **WTL(Windows Template Library)**4. **wxWidgets**5. **DirectUI** C#界面开发方式1. **WPF(Windows Presentation Foundation&#xf…

算法-集合的使用

1、set常用操作 set<int> q; //以int型为例 默认按键值升序 set<int,greater<int>> p; //降序排列 int x; q.insert(x); //将x插入q中 q.erase(x); //删除q中的x元素,返回0或1,0表示set中不存在x q.clear(); //清空q q.empty(); //判断q是否为空&a…

性能优化 - 理论篇:CPU、内存、I/O诊断手段

文章目录 Pre引言1. CPU 性能瓶颈1.1 top 命令 —— 多维度 CPU 使用率指标1.2 负载&#xff08;load&#xff09;——任务排队情况1.3 vmstat 命令 —— CPU 繁忙与等待 2. 内存性能瓶颈2.1 操作系统层面的内存分布2.2 top 命令 —— VIRT / RES / SHR 三个关键列2.3 CPU 缓存…

算法:二分查找

1.二分查找 704. 二分查找 - 力扣&#xff08;LeetCode&#xff09; 二分查找算法要确定“二段性”&#xff0c;时间复杂度为O(lonN)。为了防止数据溢出&#xff0c;所以求mid时要用防溢出的方式。 class Solution { public:int search(vector<int>& nums, int tar…

Ubuntu 22.04 上安装 PostgreSQL(使用官方 APT 源)

Ubuntu 22.04 上安装 PostgreSQL&#xff08;使用官方 APT 源&#xff09; 步骤 1&#xff1a;更新系统 sudo apt update sudo apt upgrade -y步骤 2&#xff1a;添加 PostgreSQL 官方仓库 # 安装仓库管理工具 sudo apt install wget ca-certificates gnupg lsb-release -y#…

Linux随记(十八)

一、k8s的node节点磁盘 /data已使用率超过 85% , 出现disk pressure &#xff0c;驱逐pod现象 evicted &#xff0c; the node had condition:[DiskPressure] #修改/var/lib/kubelet/config.yaml ]# cat /var/lib/kubelet/config.yaml apiVersion: kubelet.config.k8s.io/v1…

Windows MongoDB C++驱动安装

MongoDB驱动下载 MongoDB 官网MongoDB C驱动程序入门MongoDB C驱动程序入门 安装环境 安装CMAKE安装Visual Studio 编译MongoDB C驱动 C驱动依赖C驱动&#xff0c;需要先编译C驱动 下载MongoDB C驱动源码 打开CMAKE(cmake-gui) 选择源码及输出路径,然后点击configure …

MS1023/MS1224——10MHz 到 80MHz、10:1 LVDS 并串转换器(串化器)/串并转换器(解串器)

产品简述 MS1023 串化器和 MS1224 解串器是一对 10bit 并串 / 串并转 换芯片&#xff0c;用于在 LVDS 差分底板上传输和接收 10MHz 至 80MHz 的并行字速率的串行数据。起始 / 停止位加载后&#xff0c;转换为负载编 码输出&#xff0c;串行数据速率介于 120Mbps…

线性调频波形测距测速信号处理——全代码+注释

clear all close all clc %% 参数设置 fs600e6;%采样率 fc10.45e9;% 波形发射载频 t10e-6;%脉宽 f050e6;%波形中频频率 B10e6;%带宽 uB/(2*t);%调频斜率 Tv100e-6;% 脉冲重复周期 Num64;% 测速脉冲数 lamdfs/B;% 抽取带宽 Nsround(fs*t); NTvround(fs*Tv); tt0:1/fs:t-1/fs; ff…

WPS word 已有多级列表序号

wps的word中&#xff0c;原来已生成的文档里&#xff0c;已存在序号。比如&#xff0c;存在2、2.1、2.1.1、2.1.1.1、2.1.1.1.1 5层序号&#xff0c;而且已分为5级。但增加内容的时候&#xff0c;并不会自动增加序号&#xff0c;应该如何解决&#xff1f; 原来长这样&#xff…

【科研绘图系列】R语言绘制论文组合图形(multiple plots)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍加载R包数据下载导入数据数据预处理画图1画图2画图3画图4画图5系统信息介绍 这篇文章详细介绍了如何使用R语言进行科研绘图,特别是绘制论文组合图形(multiple plots)。文章从数…

springMVC-9数据格式化

数据格式化 学习目标&#xff1a; 理解在我们提交数据(比如表单时)&#xff0c;SpringMVC怎样对提交的数据进行转换和处理的 Spring MVC 上下文中内建了很多转换器&#xff0c;可完成大多数 Java 类型的转换工作。 基本数据类型可以和字符串之间自动完成转换 应用实例-页面…