自适应流量调度用于遥操作:面向时间敏感网络的通信与控制协同优化框架

news2025/6/5 22:32:13
  • 英文标题:Adaptive Flow Scheduling for Teleoperation: A Communication and Control Co-Optimization Framework over Time-Sensitive Networks

  • 中文标题:自适应流量调度用于遥操作:面向时间敏感网络的通信与控制协同优化框架

作者信息

  • Zhenrui Cao(天津大学计算机科学与技术学院,智能与计算学院)

  • Tie Qiu(东北大学计算机科学与工程学院,天津大学智能与计算学院)

  • Xiaobo Zhou(天津大学计算机科学与技术学院,智能与计算学院)

  • Hao Su(天津大学计算机科学与技术学院)

  • Min Huang(东北大学信息科学与工程学院)

  • Dapeng Lan(中国科学院沈阳自动化研究所)

  • Xingwei Wang(东北大学计算机科学与工程学院)

摘要

本文提出了一种名为AFS-RT的自适应时间敏感网络(TSN)流量调度方法,用于机器人遥操作这一典型的工业控制应用。该方法在通信与控制协同优化框架下,通过综合分析遥操作案例,将基于时隙分配的流量调度与远程控制相结合,形成一个由控制驱动的协同优化模型。为应对通信与控制之间隐式映射带来的复杂性,本文增强深度强化学习(DRL)代理,使其具备基于时隙相关性的特征提取能力,从而提升代理的决策能力。实验结果表明,AFS-RT在多种网络条件下显著提升了遥操作性能,优于现有算法。

引言

时间敏感网络(TSN)因其确定性特性,已成为工业物联网(IIoT)中实时工业控制的关键技术。TSN通过精确的流量管理确保控制命令的确定性传输,为下一代信息物理系统(CPS)的发展奠定了基础。然而,现有研究将工业控制的性能要求抽象为流量调度的刚性约束,忽略了控制优化,导致理论上的传输优化无法有效提升实际工业控制性能。本文提出了一种新的通信与控制协同优化框架,通过将流量调度与控制性能直接关联,优化TSN流量调度方案,以提升工业控制性能。

相关工作

现有研究致力于通过改进流量调度模型来提升TSN网络的传输质量,以支持工业控制应用。这些方法包括基于精确算法、启发式规则和智能优化技术的调度方法。尽管这些方法在理论上提升了调度性能,但它们将工业控制应用的性能要求抽象为延迟或抖动的刚性约束,缺乏实际工业应用数据集的支持,导致这些约束过于理想化,难以确保实际工业控制性能的提升。本文通过引入通信与控制的协同优化框架,将传输优化与控制性能直接关联,以提升TSN网络在工业控制中的应用效果。

系统模型与问题描述

本文以机器人遥操作为例,分析了TSN网络在工业控制中的应用。机器人遥操作需要确定性的流量来实时传输控制命令,因此是研究TSN控制的理想案例。本文将TSN流量调度与远程控制相结合,形成一个由实时性能和控制精度驱动的协同优化问题。通过定义控制延迟和运动偏差等指标,量化远程控制性能,并将其作为优化目标,以指导流量调度方案的优化。

自适应流量调度方法

本文将协同优化问题转化为马尔可夫决策过程(MDP),并设计了一个基于深度强化学习(DRL)的调度代理。该代理通过时隙相关性引导的特征提取方法,利用图神经网络(GNN)处理时隙之间的内在相关性,增强特征表示,从而提升代理在复杂解空间中的决策能力。通过这种方法,代理能够有效地优化流量调度方案,以提升机器人遥操作的实时性能和控制精度。

实验评估

本文构建了一个基于真实TSN网络的遥操作测试平台,并开发了一个用于大规模评估的仿真环境。实验结果表明,AFS-RT在多种网络条件下显著优于现有方法,能够显著提升机器人遥操作的实时性能和控制精度。具体而言,AFS-RT在控制延迟和运动偏差方面均表现出色,且在不同网络拓扑结构和流量配置下均能保持稳定的性能。

结论

本文提出了一种面向机器人遥操作的自适应TSN流量调度方法AFS-RT,通过通信与控制的协同优化框架,显著提升了遥操作的实时性能和控制精度。实验结果验证了该方法的有效性。未来,我们将继续关注工业场景下的网络中心应用优化,进一步探索通信、计算与控制的协同设计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2398200.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

阿里云服务器-解决宝塔登录不成功

出现问题: This site can’t be reached XX.XX.XXX.XXX took too long to respond. Try: Checking the connection Checking the proxy and the firewall Running Windows Network Diagnostics ERR_CONNECTION_TIMED_OUT 可能是端口未开放 原因:服务器…

graphviz, dot, Error: lost rA sA edge; 独立的模块

1) 有向图dot文件 digraph R { node [shaperecord]; { ranksame rA sA tA } { ranksame uB vB wB } rA -> sA; sA -> vB; t -> rA; uB -> vB; wB -> u; wB -> tA; } 2)出现报警信息 Warning: flat edge between adjacent …

Axure-元件流程图

Axure-02 线框图元件使用 目标 元件基本介绍 基础元件的使用 表单型元件的使用 菜单与表格元件的使用 案例:个人简历表 元件基本介绍 概述 在Axure RP中,元件是构建原型图的基础模块。 将元件从元件库里拖拽到画布中,即可添加元件到你…

Python爬虫解析动态网页:从渲染到数据提取

一、动态网页与静态网页的区别 在开始之前,我们需要理解动态网页与静态网页的区别。静态网页的内容在服务器端是固定的,每次请求都会返回相同的结果,通常以HTML文件的形式存储。而动态网页则不同,其内容是通过JavaScript在客户端…

LLMs之MCP:如何使用 Gradio 构建 MCP 服务器

LLMs之MCP:如何使用 Gradio 构建 MCP 服务器 导读:本文详细介绍了如何使用Gradio构建MCP服务器,包括前提条件、构建方法、关键特性和相关资源。通过一个简单的字母计数示例,演示了如何将Gradio应用转换为LLM可以使用的工具。Gradi…

VBA模拟进度条

在上一章中我跟大家介绍了ProgressBar控件的使用方法,但由于该控件无法在64位版本的Office中运行,为此我们可以采用Lable控件来模拟进度条的变化,以解决在64位版本的Office中无进度条控件的问题。 一、设计思路 添加两个重叠的Lable标签控件…

MySQL强化关键_019_索引优化

目 录 一、最左前缀原则 1.完全使用索引 2.部分使用索引 3.不使用索引 4.效率折损 (1)使用范围查找 (2)索引断开 二、索引失效场景 1. 索引列参与运算 2.索引列模糊查询以“%”开始 3.索引列是字符串类型,查…

关于list集合排序的常见方法

目录 1、list.sort() 2、Collections.sort() 3、Stream.sorted() 4、进阶排序技巧 4.1 空值安全处理 4.2 多字段组合排序 4.3. 逆序 5、性能优化建议 5.1 并行流加速 5.2 原地排序 6、最佳实践 7、注意事项 前言 Java中对于集合的排序操作,分别为list.s…

不动产登记区块链系统(Vue3 + Go + Gin + Hyperledger Fabric)

好久没有介绍过新项目的制作了,之前做的一直都是Fisco Bcos的项目,没有介绍过Hyperledger Fabric的项目,这次来给大家分享下。 系统概述 不动产登记与交易平台是一个基于Hyperledger Fabric的综合性管理系统,旨在实现不动产登记…

从 GPT 的发展看大模型的演进

这是一个技术爆炸的时代。一起来看看 GPT 诞生后,与BERT 的角逐。 BERT 和 GPT 是基于 Transformer 模型架构的两种不同类型的预训练语言模型。它们之间的角逐可以从 Transformer 的编码解码结构角度来分析。 BERT(Bidirectional Encoder Representatio…

【Qt】构建目录设置

问题 ProjectRoot/├── src/ # 源代码│ ├── project1│ └── project2├── build/ # 构建目录│ ├── build-PCIeDemoApp-Desktop_Qt_5_9_7_MSVC2015_64bit-Debug/│ └── build-PCIeDemoApp-Desktop_Qt_5_9_7_MSVC2015_64bit-Rele…

Web后端快速入门(Maven)

Maven是apche旗下的一个开源项目,是一款用于管理和构建java项目的工具。 开源项目:Welcome to The Apache Software Foundation. Maven的作用: 依赖管理(方便快捷的管理项目依赖的资源,避免版本冲突问题&#xff09…

机器学习算法:逻辑回归

1. 基础概念 定义: 逻辑回归(Logistic Regression)是一种用于解决二分类问题的监督学习算法,通过概率预测样本属于某一类别的可能性。 核心特点:输出是概率值(0~1),通过阈值&#…

AI健康小屋+微高压氧舱:科技如何重构我们的健康防线?

目前,随着科技和社会的不断发展,人们的生活水平和方式有了翻天覆地的变化。 从吃饱穿暖到吃好喝好再到健康生活,观念也在逐渐发生改变。 尤其是在21世纪,大家对健康越来越重视,这就不得不提AI健康小屋和氧舱。 一、A…

如何做接口测试?

🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 01、通用的项目架构 02、什么是接口 接口:服务端程序对外提供的一种统一的访问方式,通常采用HTTP协议,通过不同的url&#xff…

【JMeter】性能测试知识和工具

目录 何为系统性能 何为性能测试 性能测试分类 性能测试指标 性能测试流程 性能测试工具:JMeter(主测web应用) jmeter文件目录 启动方式 基本元件:元件内有很多组件 jmeter参数化 jmeter关联 自动录制脚本 直连数据库…

SOC-ESP32S3部分:25-HTTP请求

飞书文档https://x509p6c8to.feishu.cn/wiki/KL4RwxUQdipzCSkpB2lcBd03nvK HTTP(Hyper Text Transfer Protocol) 超文本传输协议,是一种建立在 TCP 上的无状态连接,整个基本的工作流程是客户端发送一个 HTTP 请求,说明…

字符编码全解析:ASCII、GBK、Unicode、UTF-8与ANSI

UTF - 8(全球字符能被唯一标识)、GBK、Unicode、ANSI 区别与关联 qwen模型分词器文件 1. ASCII(基础铺垫,理解编码起源) 作用:最早期为处理英文文本设计,是字符编码的基础,后演变成其他编码兼容的一部分 。范围:共 128 个字符(0 - 127),包含英文大小写字母、数字…

MaxCompute开发UDF和UDTF案例

文章目录 一、Java开发UDF1、创建Maven项目2、创建UDF类3、打包上传资源4、创建函数MyUDF5、SQL验证 二、Java开发UDTF1、创建Maven项目2、创建UDTF类3、打包上传更新资源4、创建函数MyUDTF5、SQL验证 三、常见问题1、发布函数报错 一、Java开发UDF 1、创建Maven项目 创建Mav…

49套夏日小清新计划总结日系卡通ppt模板

绿色小清新PPT模版,日系小清新PPT模版,粉红色PPT模版,蓝色PPT模版,草青色PPT模版,日系卡通PPT模版 49套夏日小清新计划总结日系卡通ppt模板:夏日小清新日系卡通PPT模版https://pan.quark.cn/s/9e4270d390fa…