搭建 Transformer 的基本步骤
Transformer 是一种基于自注意力机制的深度学习模型,广泛应用于自然语言处理任务。以下为搭建 Transformer 的关键步骤和代码示例。
自注意力机制
自注意力机制是 Transformer 的核心,计算输入序列中每个元素与其他元素的关联度。公式如下:
$$ \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$
其中,$Q$ 为查询矩阵,$K$ 为键矩阵,$V$ 为值矩阵,$d_k$ 为键的维度。
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(embed_size, embed_size)
def forward(self, values, keys, queries, mask):
N = queries.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
queries = queries.reshape(N, query_len, self.heads, self.head_dim)
energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
if mask is not None:
energy = energy.masked_fill(mask == 0, float("-1e20"))
attention = torch.softmax(energy / (self.embed_size ** (0.5)), dim=3)
out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(
N, query_len, self.embed_size
)
return self.fc_out(out)
多头注意力
多头注意力通过并行计算多个自注意力头,增强模型的表达能力。
class MultiHeadAttention(nn.Module):
def __init__(self, embed_size, heads):
super(MultiHeadAttention, self).__init__()
self.attention = SelfAttention(embed_size, heads)
self.norm = nn.LayerNorm(embed_size)
self.dropout = nn.Dropout(0.1)
def forward(self, x, mask):
attention = self.attention(x, x, x, mask)
x = self.dropout(self.norm(attention + x))
return x
前馈神经网络
前馈神经网络用于进一步处理自注意力层的输出。
class FeedForward(nn.Module):
def __init__(self, embed_size, ff_dim):
super(FeedForward, self).__init__()
self.ff = nn.Sequential(
nn.Linear(embed_size, ff_dim),
nn.ReLU(),
nn.Linear(ff_dim, embed_size),
)
self.norm = nn.LayerNorm(embed_size)
self.dropout = nn.Dropout(0.1)
def forward(self, x):
out = self.ff(x)
x = self.dropout(self.norm(out + x))
return x
编码器层
编码器层由多头注意力和前馈神经网络组成。
class EncoderLayer(nn.Module):
def __init__(self, embed_size, heads, ff_dim):
super(EncoderLayer, self).__init__()
self.attention = MultiHeadAttention(embed_size, heads)
self.ff = FeedForward(embed_size, ff_dim)
def forward(self, x, mask):
x = self.attention(x, mask)
x = self.ff(x)
return x
解码器层
解码器层包含掩码多头注意力、编码器-解码器注意力和前馈神经网络。
class DecoderLayer(nn.Module):
def __init__(self, embed_size, heads, ff_dim):
super(DecoderLayer, self).__init__()
self.masked_attention = MultiHeadAttention(embed_size, heads)
self.attention = MultiHeadAttention(embed_size, heads)
self.ff = FeedForward(embed_size, ff_dim)
def forward(self, x, enc_out, src_mask, trg_mask):
x = self.masked_attention(x, trg_mask)
x = self.attention(enc_out, src_mask)
x = self.ff(x)
return x
完整 Transformer
整合编码器和解码器,构建完整的 Transformer 模型。
class Transformer(nn.Module):
def __init__(
self,
src_vocab_size,
trg_vocab_size,
embed_size=512,
num_layers=6,
heads=8,
ff_dim=2048,
max_len=100,
):
super(Transformer, self).__init__()
self.encoder_embed = nn.Embedding(src_vocab_size, embed_size)
self.decoder_embed = nn.Embedding(trg_vocab_size, embed_size)
self.pos_embed = PositionalEncoding(embed_size, max_len)
self.encoder_layers = nn.ModuleList(
[EncoderLayer(embed_size, heads, ff_dim) for _ in range(num_layers)]
)
self.decoder_layers = nn.ModuleList(
[DecoderLayer(embed_size, heads, ff_dim) for _ in range(num_layers)]
)
self.fc_out = nn.Linear(embed_size, trg_vocab_size)
def forward(self, src, trg, src_mask, trg_mask):
src_embed = self.pos_embed(self.encoder_embed(src))
trg_embed = self.pos_embed(self.decoder_embed(trg))
for layer in self.encoder_layers:
src_embed = layer(src_embed, src_mask)
for layer in self.decoder_layers:
trg_embed = layer(trg_embed, src_embed, src_mask, trg_mask)
return self.fc_out(trg_embed)
位置编码
位置编码用于注入序列的位置信息。
class PositionalEncoding(nn.Module):
def __init__(self, embed_size, max_len):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, embed_size)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embed_size, 2).float() * (-math.log(10000.0) / embed_size))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe.unsqueeze(0))
def forward(self, x):
return x + self.pe[:, :x.shape[1], :]