【Go-补充】Sync包

news2025/6/4 9:18:30

并发编程-Sync包

sync.WaitGroup

在代码中生硬的使用time.Sleep肯定是不合适的,Go语言中可以使用sync.WaitGroup来实现并发任务的同步。 sync.WaitGroup有以下几个方法:

方法名功能
(wg * WaitGroup) Add(delta int)计数器+delta
(wg *WaitGroup) Done()计数器-1
(wg *WaitGroup) Wait()阻塞直到计数器变为0

sync.WaitGroup内部维护着一个计数器,计数器的值可以增加和减少。例如当我们启动了N 个并发任务时,就将计数器值增加N。每个任务完成时通过调用Done()方法将计数器减1。通过调用Wait()来等待并发任务执行完,当计数器值为0时,表示所有并发任务已经完成。

我们利用sync.WaitGroup将上面的代码优化一下:

var wg sync.WaitGroup

func hello() {
    defer wg.Done()
    fmt.Println("Hello Goroutine!")
}
func main() {
    wg.Add(1)
    go hello() // 启动另外一个goroutine去执行hello函数
    fmt.Println("main goroutine done!")
    wg.Wait()
}

需要注意sync.WaitGroup是一个结构体,传递的时候要传递指针。

sync.Once

sync.Once 是 Go 语言 sync 包提供的一个同步原语,用于确保某个操作只执行一次,无论它被调用多少次或有多少个 Goroutine 同时尝试执行它。

它的主要用途包括:

1.延迟初始化 (Lazy Initialization):当你想在资源第一次被需要时才进行初始化,而不是在程序启动时就初始化,sync.Once 可以确保初始化只发生一次,从而避免重复初始化的开销。

import (
	"fmt"
	"sync"
	"time"
)

var once sync.Once
var expensiveResource string

func getExpensiveResource() string {
	once.Do(func() {
		fmt.Println("正在初始化昂贵资源......")
		time.Sleep(100 * time.Millisecond) // 模拟初始化耗时
		expensiveResource = "这是一个昂贵的资源"
	})
	return expensiveResource
}

func main() {
	var wg sync.WaitGroup
	for i := 0; i < 5; i++ {
		wg.Add(1)
		go func() {
			defer wg.Done()
			fmt.Println(getExpensiveResource())
		}()
	}
	wg.Wait()
	fmt.Println("所有 Goroutine 已完成。")
}

在上面的例子中,"正在初始化昂贵资源..." 只会被打印一次,即使 getExpensiveResource 被多个 Goroutine 调用。

QQ_1748327479922

2.单例模式 (Singleton Pattern):确保一个类的实例只被创建一次。

package main

import (
	"fmt"
	"sync"
)

type Singleton struct {
	Name string
}

var (
	instance *Singleton
	once     sync.Once
)

func GetSingletonInstance() *Singleton {
	once.Do(func() {
		fmt.Println("create Singleton instance")
		instance = &Singleton{Name: "my Singleton instance"}
	})
	return instance
}

func main() {
	var wg sync.WaitGroup
	for i := 0; i < 5; i++ {
		wg.Add(1)
		go func() {
			defer wg.Done()
			s := GetSingletonInstance()
			fmt.Println(s.Name)
		}()
	}
	wg.Wait()
}

QQ_1748327550850

3.包级别初始化 (Package-Level Initialization):在包加载时进行一次性设置。

sync.Once 的新特性 (Go 1.21 及更高版本)

Go 1.21 引入了 OnceFunc, OnceValue, 和 OnceValues,它们是 sync.Once 的封装,提供了更简洁的用法:

  • OnceFunc(f func()) func(): 返回一个函数,该函数只会调用 f 一次。多次调用返回的函数都会执行,但 f 只会在第一次被调用。
  • OnceValue[T any](f func() T) func() T: 返回一个函数,该函数只会调用 f 一次并缓存 f 的返回值。后续调用都会返回相同的值。
  • OnceValues[T1, T2 any](f func() (T1, T2)) func() (T1, T2): 类似于 OnceValue,但用于返回两个值。

示例:OnceValue

package main

import (
	"fmt"
	"sync"
)

func main() {
	// 定义一个只计算一次并返回结果的函数
	getSumOnce := sync.OnceValue(func() int {
		sum := 0
		for i := 0; i < 1000; i++ {
			sum += i
		}
		fmt.Println("计算了一次:", sum)
		return sum
	})

	var wg sync.WaitGroup
	for i := 0; i < 10; i++ {
		wg.Add(1)
		go func() {
			defer wg.Done()
			result := getSumOnce() // 这里开辟10个协程 执行函数,但实际只执行了一次
			fmt.Printf("Goroutine %d 得到结果: %d\n", i, result)
		}()
	}
	wg.Wait()
}

在这个例子中,getSumOnce 函数只会在第一次被调用时执行内部的求和逻辑,并打印 “计算了一次:”,之后的调用会直接返回缓存的结果。

QQ_1748327857447

重要注意事项:

  • sync.Once 实例一旦执行过其 Do 方法,就不能被重置。
  • 如果传递给 Do 方法的函数发生 panic,sync.Once 仍会认为该操作已完成,后续调用不会再次执行该函数。
  • sync.Once 不应被复制。

总而言之,sync.Once 是 Go 中一个强大且常用的同步工具,用于安全地执行一次性初始化。

sync.Map

sync.Map 是 Go 语言 sync 包提供的一个并发安全的哈希映射(map),它旨在解决 Go 内置 map 在并发访问时需要外部 sync.RWMutex 保护的性能问题,尤其是在读多写少的场景下。

Go 语言内置的 map 不是并发安全的。如果在多个 Goroutine 中同时对一个 map 进行读写操作,会导致数据竞争(data race),进而引发程序崩溃或产生不确定的行为。为了解决这个问题,通常需要使用 sync.RWMutex 来保护 map 的并发访问

var m = make(map[string]int)

func get(key string) int {
	return m[key]
}

func set(key string, value int) {
	m[key] = value
}

func main() {
	wg := sync.WaitGroup{}
	for i := 0; i < 20; i++ {
		wg.Add(1)
		go func(n int) {
			key := strconv.Itoa(n)
			set(key, n)
			fmt.Printf("k=:%v,v:=%v\n", key, get(key))
			wg.Done()
		}(i)
	}
	wg.Wait()
}

QQ_1748328489525

上面的代码开启少量几个goroutine的时候可能没什么问题,当并发多了之后执行上面的代码就会报fatal error: concurrent map writes错误。

像这种场景下就需要为map加锁来保证并发的安全性了,Go语言的sync包中提供了一个开箱即用的并发安全版map–sync.Map。开箱即用表示不用像内置的map一样使用make函数初始化就能直接使用。同时sync.Map内置了诸如Store、Load、LoadOrStore、Delete、Range等操作方法

sync.Map 的常用方法:

  • Store(key, value interface{}): 将 key-value 对存储到 Map 中。

  • Load(key interface{}) (value interface{}, ok bool): 根据 key 加载值。如果 key 存在,返回 value 和 true;否则返回 nil 和 false。

  • LoadOrStore(key, value interface{}) (actual interface{}, loaded bool): 如果 key 存在,则返回其现有值和 true;否则,存储新的 key-value 对并返回 value 和 false。这是一个非常常用的方法,可以实现“如果不存在就存储,否则就加载”的逻辑。

  • Delete(key interface{}): 从 Map 中删除 key 及其对应的值。

  • Range(f func(key, value interface{}) bool): 遍历 Map 中的所有 key-value 对,对每个对调用提供的函数 f。如果 f 返回 false,则停止遍历。注意:在 Range 期间,Map 可能会被并发修改,所以遍历的结果可能不是一个完全一致的快照。

var m = sync.Map{}

func main() {
	wg := sync.WaitGroup{}
	for i := 0; i < 10; i++ {
		wg.Add(1)
		go func(n int) {
			key := strconv.Itoa(n)
			m.Store(key, n)
			value, _ := m.Load(key)
			fmt.Printf("k=:%v,v:=%v\n", key, value)
			wg.Done()
		}(i)
	}
	wg.Wait()
}

QQ_1748328657099

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2395814.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

设备驱动与文件系统:01 I/O与显示器

操作系统设备驱动学习之旅——以显示器驱动为例 从这一节开始&#xff0c;我要学习操作系统的第四个部分&#xff0c;就是i o设备的驱动。今天要讲的是第26讲&#xff0c;内容围绕i o设备中的显示器展开&#xff0c;探究显示器是如何被驱动的&#xff0c;也就是操作系统怎样让…

智慧充电桩数字化管理平台:环境监测与动态数据可视化技术有哪些作用?

随着新能源汽车的普及&#xff0c;智慧充电桩作为基础设施的重要组成部分&#xff0c;正逐步向数字化、智能化方向发展。环境监测与动态数据可视化技术的应用&#xff0c;为充电桩的高效管理和运维提供了全新解决方案。通过实时采集环境参数与运行数据&#xff0c;并结合可视化…

家政小程序开发,开启便捷生活新篇章

在快节奏的现代生活中&#xff0c;家务琐事常常让人分身乏术&#xff0c;如何高效解决家政服务需求成了众多家庭的难题。家政小程序开发&#xff0c;正是为解决这一痛点而生&#xff0c;它将为您带来前所未有的便捷生活体验。 想象一下&#xff0c;您只需打开手机上的家政小程…

李臻20242817_安全文件传输系统项目报告_第14周

安全文件传输系统项目报告&#xff08;第 14 周&#xff09; 1. 代码链接 Gitee 仓库地址&#xff1a;https://gitee.com/li-zhen1215/homework/tree/master/Secure-file 代码结构说明&#xff1a; SecureFileTransfer/ ├── client/ # 客户端主目…

20250531MATLAB三维绘图

MATLAB三维绘图 三维曲线&#xff1a;plot3功能介绍代码实现过程plot3实现效果 三维曲面空间曲面作图命令&#xff1a;meshmeshgrid语法示例应用meshgrid实操训练 peakspeaks 的基本用法peaks数学表达式实操训练自定义网格大小使用自定义网格 meshMATLAB代码对齐快捷键Ctrli墨西…

深入理解C#异步编程:原理、实践与最佳方案

在现代软件开发中&#xff0c;应用程序的性能和响应能力至关重要。特别是在处理I/O密集型操作&#xff08;如网络请求、文件读写、数据库查询&#xff09;时&#xff0c;传统的同步编程方式会导致线程阻塞&#xff0c;降低程序的吞吐量。C# 的异步编程模型&#xff08;async/aw…

基于千帆大模型的AI体检报告解读系统实战:使用OSS与PDFBox实现PDF内容识别

目录 说明 前言 需求 流程说明 表结构说明 整体流程 百度智能云 注册和实名认证 创建应用 费用说明 大模型API说明 集成大模型 设计Prompt 上传体检报告 读取PDF内容 功能实现 智能评测 抽取大模型工具 功能实现 总结 说明 AI体检报告解读、病例小结或者…

Spring,SpringMVC,SpringBoot

1.Spring最核心包括aop和ioc概念 AOP 能够将将哪些于业务无关的&#xff0c;并且大量重复的业务逻辑进行封装起来&#xff0c;便于减少重复代码&#xff0c;降低模块之间的耦合度&#xff0c;给未来的系统更好的可用性和可维护性。 Spring中AOP是采用动态代理&#xff0c;JDK代…

数据分析学习笔记——A/B测试

目录 前言 A/B测试中的统计学方法 假设检验 Levenes Test莱文测试 t 检验&#xff08;两组均值差异&#xff09; 实战案例 数据来源及参考资料 代码详解 导入数据 计算ROI Request检验 GMV检验 ROI检验 结语 前言 什么是A/B测试&#xff1f;说白了就是中学生物实…

基于RK3568/RK3588/全志H3/飞腾芯片/音视频通话程序/语音对讲/视频对讲/实时性好/极低延迟

一、前言说明 近期收到几个需求都是做音视频通话&#xff0c;很多人会选择用webrtc的方案&#xff0c;这个当然是个不错的方案&#xff0c;但是依赖的东西太多&#xff0c;而且相关组件代码量很大&#xff0c;开发难度大。所以最终选择自己属性的方案&#xff0c;那就是推流拉…

解决 Win11 睡眠后黑屏无法唤醒的问题

目录 一、问题描述二、解决方法1. 禁用快速启动2. 设置 Management Engine Interface3. 允许混合睡眠其他命令 4. 修复系统文件5. 更新 Windows 或驱动程序6. 其他1&#xff09;更改电源选项2&#xff09;刷新 Hiberfil.sys 文件3&#xff09;重置电源计划4&#xff09;运行系统…

[ElasticSearch] RestAPI

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…

Linux中的shell脚本

什么是shell脚本 shell脚本是文本的一种shell脚本是可以运行的文本shell脚本的内容是由逻辑和数据组成shell脚本是解释型语言 用file命令可以查看文件是否是一个脚本文件 file filename 脚本书写规范 注释 单行注释 使用#号来进行单行注释 多行注释 使用 : " 注释内容…

dvwa3——CSRF

LOW&#xff1a; 先尝试change一组密码&#xff1a;123456 修改成功&#xff0c;我们观察上面的url代码 http://localhost/DVWA/vulnerabilities/csrf/?password_new123456&password_conf123456&ChangeChange# 将password_new部分与password_conf部分改成我们想要的…

【学习笔记】Transformer

学习的博客&#xff08;在此致谢&#xff09;&#xff1a; 初识CV - Transformer模型详解&#xff08;图解最完整版&#xff09; 1 整体结构 Transformer由Encoder和Decoder组成&#xff0c;分别包含6个block。 Transformer的工作流程大体如下&#xff1a; 获取每个单词的em…

欢乐熊大话蓝牙知识12:用 BLE 打造家庭 IoT 网络的三种方式

🏠 用 BLE 打造家庭 IoT 网络的三种方式 不止是“蓝牙耳机”,BLE 还能把你家“点亮成精”! 👋 前言:BLE 不只是蓝牙耳机的“代名词” 蓝牙?很多人一听就联想到“耳机连接失败请重试”。但你知道吗?现在 BLE(Bluetooth Low Energy)在智能家居中已经偷偷搞起了大事情。…

02.上帝之心算法用GPU计算提速50倍

本文介绍了上帝之心的算法及其Python实现&#xff0c;使用Python语言的性能分析工具测算性能瓶颈&#xff0c;将算法最耗时的部分重构至CUDA C语言在纯GPU上运行&#xff0c;利用GPU核心更多并行更快的优势显著提高算法运算速度&#xff0c;实现了结果不变的情况下将耗时缩短五…

MES管理系统:Java+Vue,含源码与文档,实现生产过程实时监控、调度与优化,提升制造企业效能

前言&#xff1a; 在当今竞争激烈的制造业环境中&#xff0c;企业面临着提高生产效率、降低成本、提升产品质量以及快速响应市场变化等多重挑战。MES管理系统作为连接企业上层计划管理系统与底层工业控制之间的桥梁&#xff0c;扮演着至关重要的角色。它能够实时收集、分析和处…

LeetCode算法题 (搜索二维矩阵)Day18!!!C/C++

https://leetcode.cn/problems/search-a-2d-matrix/description/ 一、题目分析 给你一个满足下述两条属性的 m x n 整数矩阵&#xff1a; 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target &#xff0c;如果 ta…

VectorStore 组件深入学习与检索方法

考虑到目前市面上的向量数据库众多&#xff0c;每个数据库的操作方式也无统一标准&#xff0c;但是仍然存在着一些公共特征&#xff0c;LangChain 基于这些通用的特征封装了 VectorStore 基类&#xff0c;在这个基类下&#xff0c;可以将方法划分成 6 种&#xff1a; 相似性搜…