【Python训练营打卡】day40 @浙大疏锦行

news2025/7/22 15:54:29

DAY 40 训练和测试的规范写法

知识点回顾:

1.  彩色和灰度图片测试和训练的规范写法:封装在函数中

2.  展平操作:除第一个维度batchsize外全部展平

3.  dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。

单通道图片的规范写法

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np

# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 1. 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])

# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.MNIST(
    root='./data',
    train=False,
    transform=transform
)

# 3. 创建数据加载器
batch_size = 64  # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量
        self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元
        self.relu = nn.ReLU()  # 激活函数
        self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)
        
    def forward(self, x):
        x = self.flatten(x)  # 展平图像
        x = self.layer1(x)   # 第一层线性变换
        x = self.relu(x)     # 应用ReLU激活函数
        x = self.layer2(x)   # 第二层线性变换,输出logits
        return x

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)

criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):
    model.train()  # 设置为训练模式
    
    # 新增:记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号(从1开始)
    
    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始
            
            # 统计准确率和损失(原逻辑保留,用于 epoch 级统计)
            running_loss += iter_loss
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                      f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 原 epoch 级逻辑(测试、打印 epoch 结果)不变
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        epoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    # 保留原 epoch 级曲线(可选)
    # plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)
    
    return epoch_test_acc  # 返回最终测试准确率

# 6. 测试模型
def test(model, test_loader, criterion, device):
    model.eval()  # 设置为评估模式
    test_loss = 0
    correct = 0
    total = 0
    
    with torch.no_grad():  # 不计算梯度,节省内存和计算资源
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += criterion(output, target).item()
            
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
    
    avg_loss = test_loss / len(test_loader)
    accuracy = 100. * correct / total
    return avg_loss, accuracy  # 返回损失和准确率

# 7.绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()

# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

彩色图片的规范写法

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np

# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 1. 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),                # 转换为张量
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])

# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=transform
)

# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量
        self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元
        self.relu1 = nn.ReLU()
        self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合
        self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元
        self.relu2 = nn.ReLU()
        self.dropout2 = nn.Dropout(0.2)
        self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别
        
    def forward(self, x):
        # 第一步:将输入图像展平为一维向量
        x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]
        
        # 第一层全连接 + 激活 + Dropout
        x = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]
        x = self.relu1(x)    # 应用ReLU激活函数
        x = self.dropout1(x) # 训练时随机丢弃部分神经元输出
        
        # 第二层全连接 + 激活 + Dropout
        x = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]
        x = self.relu2(x)    # 应用ReLU激活函数
        x = self.dropout2(x) # 训练时随机丢弃部分神经元输出
        
        # 第三层(输出层)全连接
        x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]
        
        return x  # 返回未经过Softmax的logits

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)

criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):
    model.train()  # 设置为训练模式
    
    # 记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号
    
    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)  # 移至GPU
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 记录当前 iteration 的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计准确率和损失
            running_loss += iter_loss
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 每100个批次打印一次训练信息
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                      f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 计算当前epoch的平均训练损失和准确率
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        
        # 测试阶段
        model.eval()  # 设置为评估模式
        test_loss = 0
        correct_test = 0
        total_test = 0
        
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    
    return epoch_test_acc  # 返回最终测试准确率

# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()

# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

# # 保存模型
# torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# # print("模型已保存为: cifar10_mlp_model.pth")

由于深度mlp的参数过多,为了避免过拟合在这里引入了dropout这个操作,他可以在训练阶段随机丢弃一些神经元,避免过拟合情况。dropout的取值也是超参数。

在测试阶段,由于开启了eval模式,会自动关闭dropout。

可以继续调用这个函数来复用

# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

此时你会发现MLP(多层感知机)在图像任务上表现较差(即使增加深度和轮次也只能达到 50-55% 准确率),主要原因与图像数据的空间特性和MLP 的结构缺陷密切相关。

1. MLP 的每一层都是全连接层,输入图像会被展平为一维向量(如 CIFAR-10 的 32x32x3 图像展平为 3072 维向量)。图像中相邻像素通常具有强相关性(如边缘、纹理),但 MLP 将所有像素视为独立特征,无法利用局部空间结构。例如,识别 “汽车轮胎” 需要邻近像素的组合信息,而 MLP 需通过大量参数单独学习每个像素的关联,效率极低。

2. 深层 MLP 的参数规模呈指数级增长,容易过拟合

所以我们接下来将会学习CNN架构,CNN架构的参数规模相对较小,且训练速度更快,而且CNN架构可以解决图像识别问题,而MLP不能。

笔记

在 PyTorch 中处理张量(Tensor)时,以下是关于展平(Flatten)、维度调整(如 view/reshape)等操作的关键点,这些操作通常不会影响第一个维度(即批量维度batch_size):

图像任务中的张量形状

输入张量的形状通常为:
(batch_size, channels, height, width)
例如:(batch_size, 3, 28, 28)
其中,batch_size 代表一次输入的样本数量。

NLP 任务中的张量形状

输入张量的形状可能为:
(batch_size, sequence_length)
此时,batch_size 同样是第一个维度。

1. Flatten 操作

  • 功能:将张量展平为一维数组,但保留批量维度。
  • 示例:
    • 输入形状:(batch_size, 3, 28, 28)(图像数据)
    • Flatten 后形状:(batch_size, 3×28×28) = (batch_size, 2352)
    • 说明:第一个维度batch_size不变,后面的所有维度被展平为一个维度。

2. view/reshape 操作

  • 功能:调整张量维度,但必须显式保留或指定批量维度。
  • 示例:
    • 输入形状:(batch_size, 3, 28, 28)
    • 调整为:(batch_size, -1)
    • 结果:展平为两个维度,保留batch_size,第二个维度自动计算为3×28×28=2352

总结

  • 批量维度不变性:无论进行 flatten、view 还是 reshape 操作,第一个维度batch_size通常保持不变。
  • 动态维度指定:使用-1让 PyTorch 自动计算该维度的大小,但需确保其他维度的指定合理,避免形状不匹配错误。

@浙大疏锦行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2394062.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MCP Server的五种主流架构:从原理到实践的深度解析

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 在AI大模型与外部数据交互的浪潮中,MCP Server(Model Context Protocol Server)已成为连接模型与现实世界的桥梁。本文…

跨协议协同智造新实践:DeviceNet-EtherCAT网关驱动汽车焊接装配效能跃迁

在汽车制造领域,机器人协作对于提升生产效率与产品质量至关重要。焊接、装配等关键环节,需要机器人与各类设备紧密配合。JH-DVN-ECT疆鸿智能的devicenet从站转ethercat主站协议网关,成为实现这一高效协作的得力助手,尤其是在连接欧…

让 Deepseek 写一个尺码计算器

下面是一个简单的尺码计算器微信小程序的代码实现,包含页面布局、逻辑处理和样式。 1. 项目结构 size-calculator/ ├── pages/ │ ├── index/ │ │ ├── index.js │ │ ├── index.json │ │ ├── index.wxml │ │ └── inde…

代码随想录算法训练营第60期第五十三天打卡

大家好,我们今天来到了最后一章图论,其实图论比较难,涉及的算法也比较多,今天比较重要的就是深度优先搜索与广度优先搜索,后面的迪杰斯特拉算法等算法在我们求最短路都会涉及到,还有最近公共祖先&#xff0…

Nacos实战——动态 IP 黑名单过滤

1、需求分析 一些恶意用户(‏可能是黑客、爬虫、DDoS ؜攻击者)可能频繁请求服务器资​源,导致资源占用过高。针对这种问题,可以通过IP‏ 封禁,可以有效拉؜黑攻击者,防止资源​被滥用,保障合法…

实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.14 R语言解题

本文是实验设计与分析&#xff08;第6版&#xff0c;Montgomery著&#xff0c;傅珏生译) 第5章析因设计引导5.7节思考题5.14 R语言解题。主要涉及方差分析&#xff0c;正态假设检验&#xff0c;残差分析&#xff0c;交互作用图。 dataframe<-data.frame( strengthc(9.60,9.…

在Ubuntu20.04上安装ROS Noetic

本章教程,主要记录在Ubuntu20.04上安装ROS Noetic。 一、添加软件源 sudo sh -c . /etc/lsb-release && echo "deb http://mirrors.tuna.tsinghua.edu.cn/ros/ubuntu/ `lsb_release -cs` main" > /etc/apt/sources.list.d/ros-latest.list二、设置秘钥 …

python里面导入yfinance的时候报错

我的代码&#xff1a; import yfinance as yf import os proxy http://127.0.0.1:7890 # 代理设置&#xff0c;此处修改 os.environ[HTTP_PROXY] proxy os.environ[HTTPS_PROXY] proxydata yf.download("AAPL",start"2010-1-1",end"2021-8-1&quo…

winform LiveCharts2的使用--图表的使用

介绍 对于图标&#xff0c;需要使用到livechart2中的CartesianChart 控件&#xff0c;是一个“即用型”控件&#xff0c;用于使用笛卡尔坐标系创建绘图。需要将Series属性分配一组ICartesianSeries。 例如下面代码&#xff0c;创建一个最简单的图表&#xff1a; cartesianCha…

【计算机网络】IPv6和NAT网络地址转换

IPv6 IPv6协议使用由单/双冒号分隔一组数字和字母&#xff0c;例如2001:0db8:85a3:0000:0000:8a2e:0370:7334&#xff0c;分成8段。IPv6 使用 128 位互联网地址&#xff0c;有 2 128 2^{128} 2128个IP地址无状态地址自动配置&#xff0c;主机可以通过接口标识和网络前缀生成全…

flutter简单自定义跟随手指滑动的横向指示器

ScrollController _scrollController ScrollController();double _scrollIndicatorWidth 60.w;//指示器的长度double _maxScrollPaddingValue 30.w;//指示器中蓝条可移动的最大距离double _scrollPaddingValue 0.0;//指示器中蓝条左边距(蓝条移动距离)overridevoid initSta…

有机黑鸡蛋与普通鸡蛋:差异剖析与选购指南

在我们的日常饮食结构里&#xff0c;鸡蛋始终占据着不可或缺的位置&#xff0c;是人们获取营养的重要来源。如今&#xff0c;市场上鸡蛋种类丰富&#xff0c;除了常见的普通鸡蛋&#xff0c;有机黑鸡蛋也逐渐崭露头角&#xff0c;其价格通常略高于普通鸡蛋。这两者究竟存在哪些…

CTFHub-RCE 命令注入-无过滤

观察源代码 判断是Windows还是Linux 源代码中有 ping -c 4 说明是Linux 查看有哪些文件 127.0.0.1|ls 发现除了index.php文件外&#xff0c;还存在一个可疑的文件 打开flag文件 我们尝试打开这个文件 127.0.0.1|cat 19492844826916.php 可是发现 文本内容显示不出来&…

leetcode hot100刷题日记——31.二叉树的直径

二叉树直径详解 题目描述对直径的理解解答&#xff1a;dfs小TIPS 题目描述 对直径的理解 实际上&#xff0c;二叉树的任意一条路径均可以被看作由某个节点为起点&#xff0c;从其左儿子和右儿子向下遍历的路径拼接得到。 那我们找二叉树的直径&#xff08;最大路径&#xff09…

行为型:解释器模式

目录 1、核心思想 2、实现方式 2.1 模式结构 2.2 实现案例 3、优缺点分析 4、适用场景 5、注意事项 1、核心思想 目的&#xff1a;针对某种语言并基于其语法特征创建一系列的表达式类&#xff08;包括终极表达式与非终极表达式&#xff09;​&#xff0c;利用树结构模式…

linux 1.0.3

挂载 这个虚拟机啥时候都能挂起 会有一个这个东东 选择连接虚拟机&#xff0c;然后就连到linux了 这有两个键&#xff0c;一个是和主机连接一个是和虚拟机连接 先把U盘拔掉 原本是没有这个盘的&#xff0c;但是插上去之后&#xff0c;电脑创建了一个虚拟的盘 也就是图中的F…

C#集合循环删除某些行

你想要在遍历集合&#xff08;例如List&#xff09;的同时删除某些元素时&#xff0c;直接在循环中删除元素可能会导致问题&#xff0c;因为这可能会改变集合的大小和导致索引问题&#xff1b; 可以用for循环的倒序来删除&#xff1b; 如果要删除满足特定条件的所有元素&…

【Linux 学习计划】-- 进程地址空间

目录 进程地址的引入 进程地址空间基础原理 区域划分的本质 如何理解进程地址空间 越界访问的本质 进一步理解写时拷贝 重谈 fork 返回值 结语 进程地址的引入 我们先来看一段代码&#xff1a; 首先我们可以看到&#xff0c;父进程和子进程是可以同时可以看到一个变量…

CTFHub-RCE 命令注入-过滤空格

观察源代码 代码里面可以发现过滤了空格 判断是Windows还是Linux 源代码中有 ping -c 4 说明是Linux 查看有哪些文件 127.0.0.1|ls 打开flag文件 我们尝试将空格转义打开这个文件 利用 ${IFS} 127.0.0.1|cat${IFS}flag_195671031713417.php 可是发现 文本内容显示不出来&…

Express教程【002】:Express监听GET和POST请求

文章目录 2、监听post和get请求2.1 监听GET请求2.2 监听POST请求 2、监听post和get请求 创建02-app.js文件。 2.1 监听GET请求 1️⃣通过app.get()方法&#xff0c;可以监听客户端的GET请求&#xff0c;具体的语法格式如下&#xff1a; // 1、导入express const express req…