Med-R1论文阅读理解-1

news2025/6/2 7:26:46

论文总结:Med-R1: Reinforcement Learning for Generalizable Medical Reasoning in Vision-Language Models

论文写了什么?

本文提出了一种名为 Med-R1 的新框架,旨在通过强化学习(Reinforcement Learning, RL)提升视觉-语言模型(Vision-Language Models, VLMs)在医疗领域的推理能力与泛化能力。与传统的监督微调(SFT)方法不同,Med-R1 利用一种称为 Group Relative Policy Optimization (GRPO) 的强化学习策略,在不需要显式 Chain-of-Thought(CoT)标注的情况下,引导模型构建合理的医学推理路径。

该研究聚焦于八个关键的医学影像模态(如 CT、MRI、X-ray 等)和五类医学问答任务(如疾病诊断、病变分级等),验证了 Med-R1 在跨模态和跨任务泛化方面的显著优势。


论文主要的工作做了什么内容?

1. 提出 Med-R1 框架

Med-R1 是首个支持多种医学影像模态(CT、MRI、超声、皮肤镜等)并能生成可解释推理过程的视觉-语言模型。不同于传统 SFT 方法依赖高质量 CoT 数据,Med-R1 使用强化学习机制,仅需最终答案作为监督信号即可训练出具有逻辑推理能力的模型。

2. 引入 GRPO 强化学习算法

作者采用 GRPO(Group Relative Policy Optimization)替代传统的 PPO(Proximal Policy Optimization),其核心在于:

  • 不需要复杂的值函数估计。
  • 利用组内相对比较来稳定策略更新。
  • 结合基于规则的奖励函数(如是否符合放射学决策树)来引导模型输出医学上可信的推理路径。

3. 全面评估模型性能

实验在 OmniMedVQA 数据集上进行,涵盖以下两个维度:

  • 跨模态泛化:在某一模态上训练,测试其他七种模态的表现。
  • 跨任务泛化:在某一任务上训练,测试其他四种任务的表现。

此外,还对比了零样本(zero-shot)、SFT 和 GRPO 微调的效果,证明 Med-R1 在多个指标上均优于当前主流模型,包括 Qwen2-VL-72B 这样的大参数量模型。


论文取得了哪些进展?

1. 跨模态泛化性能提升显著

Med-R1(2B 参数)在平均准确率上达到 69.91%,比基础模型 Qwen2-VL-2B 提升了 29.94%,甚至超过了拥有 720 亿参数的 Qwen2-VL-72B(68.05%)。这表明:

参数规模不再是决定性因素,RL 驱动的推理能力才是关键。

2. 跨任务泛化表现优越

在五类医学问答任务中,Med-R1 相较于基础模型提升了 32.06%,且在“疾病诊断”和“模态识别”任务上表现出最强的泛化能力,说明其推理路径更贴近医学逻辑。

3. 轻量化部署可行性高

由于 Med-R1 模型规模小(仅 2B 参数),相比大型模型在计算资源和部署成本上更具优势,适用于资源受限的临床环境。


论文里面有哪些新颖的技术?

1. 无需 CoT 标注的强化学习

以往的医学推理模型严重依赖专家标注的 Chain-of-Thought 数据,而 Med-R1 通过 GRPO + 规则奖励机制,实现从最终答案反推合理推理路径,解决了数据标注昂贵的问题。

2. 规则引导的奖励设计

奖励函数分为两类:

  • 格式奖励:判断输出是否包含“思考过程”和“最终答案”标签。
  • 准确性奖励:判断最终答案是否与真实标签一致。

这种结合规则与反馈的设计方式,增强了模型对医学逻辑的理解能力。

3. 组内相对策略优化(GRPO)

GRPO 相比 PPO 更加高效,具体体现在:

  • 无需单独训练价值网络。
  • 通过组内响应之间的相对比较来估计优势函数。
  • 支持大规模并行训练,提升效率约 50%。

总结

Med-R1 为医学视觉-语言模型提供了一条全新的发展路径。不仅在性能上超越了现有 SFT 方法和更大规模的模型,还在泛化性和可解释性方面实现了突破。论文的核心贡献在于:

  • 首次将强化学习应用于医学多模态推理
  • 提出了 GRPO + 规则奖励的新型训练范式
  • 验证了参数效率模型也能取得卓越性能

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2393950.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【从零开始学习QT】快捷键、帮助文档、Qt窗口坐标体系

目录 Qt Creator 中的快捷键 使用帮助文档 Qt 窗口坐标体系 QT专栏:QT_uyeonashi的博客-CSDN博客 Qt Creator 中的快捷键 • 注释:ctrl / • 运行:ctrl R • 编译:ctrl B • 字体缩放:ctrl 鼠标滑轮 • 查找&am…

基于stm32的多旋翼无人机(Multi-rotor UAV based on stm32)

由于一直在调试本项目,好久没有发文章,最近本项目的PID调试初见成效!开始正文前首先感谢各位粉丝的支持,以及对本项目技术上支持的老师以及师兄,谢谢你们! 对应源码及文件:源码及文件下载 基于…

实验分享|基于sCMOS相机科学成像技术的耐高温航空涂层材料损伤检测实验

1实验背景 航空发动机外壳的耐高温涂层材料在长期高温、高压工况下易产生微小损伤与裂纹,可能导致严重安全隐患。传统光学检测手段受限于分辨率与灵敏度,难以捕捉微米级缺陷,且检测效率低下。 某高校航空材料实验室,采用科学相机…

RAG混合检索:倒数秩融合RRF算法

文章目录 检索增强生成 (RAG)倒数秩融合在 RAG 中的工作原理RRF 背后的数学直觉检索增强生成 (RAG) RAG 是自然语言处理中的一种强大技术,结合了基于检索的模型和生成模型的优势。 如果检索器未能从检索器中获取相关文档,则精度较低,幻觉的可能性会增加。 有些查询适合…

2011肠衣问题

1 D类竞赛题目---具体题目 D题 天然肠衣搭配问题 天然肠衣(以下简称肠衣)制作加工是我国的一个传统产业,出口量占世界首位。肠衣经过清洗整理后被分割成长度不等的小段(原料),进入组装工序。 传统的生产…

RG3000网关构建5G LAN智慧工厂智能制造

在工业4.0与智能制造的趋势下,传统制造业正前后往智慧工厂转型升级。在转型过程中,高效、稳定、灵活的网络通信是实现设备互联互通、数据实时交互与智能决策的基础。智联物联RG3000网关,凭借其融合5G通信技术、WiFi6无线传输、边缘计算能力与…

webrtc初了解

1. webrtc的简介 一、WebRTC 是什么? Web Real-Time Communication(网页实时通信),是浏览器原生支持的实时音视频通信技术,无需安装插件或客户端,可直接在浏览器之间实现点对点(P2P&#xff09…

[STM32学习笔记(九)]CubeMX项目使用系统定时器SysTick的中断服务函数进行定时

有很多文章说明了由于HAL_Delay()函数的本质是系统定时器计数,通过全局变量uwTick的不断增加实现的比较延迟。调用HAL_Delay()函数会阻塞其他工作,因此在外设ISR进程调用该延迟时,要特别小心。 因此,现在考虑,既然系统…

将ipynb文件转换为markdown格式文件

文章目录 将ipynb文件转换为markdown格式文件nbconvert 包安装nbconvert 使用 将ipynb文件转换为markdown格式文件 有时候,我们需要把Jupyter notebook的.ipynb格式文件转换为markdown格式.md,便于使用。 那么,我们可以通过安装nbconvert包&a…

Vulnhub_Zico2_wp

一、信息收集 1、主机发现 arp-scan -l 2、端口扫描 nmap -sS -sV 192.168.66.144 nmap -p- -Pn -sC -sV -n 192.168.66.144 whatweb -v 192.168.66.144 这里开放了3个端口,先80端口拿去目录,然后测试下22端口有没有什么未授权之类的,然后…

【玩转腾讯混元大模型】腾讯混元大模型AIGC系列产品深度体验

【玩转腾讯混元大模型】腾讯混元大模型AIGC系列产品深度体验 腾讯推出的系列AI产品:混元大模型、大模型图像创作引擎、大模型视频创作引擎、腾讯元宝,共同构成了一个强大的AI生态系统;凭借腾讯自研的大规模预训练技术和先进的自然语言处理、计…

Attention Is All You Need论文阅读笔记

Attention is All You Need是如今机器学习研究者必读的论文,该文章提出的Transformer架构是如今很多机器学习项目的基础,说该文章极大推动了机器学习领域的研究也不为过。 但这么重要,也是必读的文章对初学者来说其实并不友好,很多…

如何制作全景VR图?

全景VR图,特别是720度全景VR,为观众提供一种沉浸式体验。 全景VR图能够捕捉场景的全貌,还能将多个角度的图片或视频无缝拼接成一个完整的全景视角,让观众在虚拟环境中自由探索。随着虚拟现实(VR)技术的飞速…

Flask与PostgreSQL交互教程

目录 1. 项目结构2. 环境准备2.1 安装依赖2.2 使用Docker启动PostgreSQL 3. 数据库配置3.1 环境变量配置3.2 数据库连接配置 4. 定义数据库模型5. 实现API接口5.1 创建用户5.2 获取所有用户5.3 获取单个用户5.4 更新用户5.5 删除用户 6. 运行应用7. API测试7.1 创建用户7.2 获取…

XJTU-SY轴承振动数据集的json自封装

1.最终形式的形式 不用再去翻文档找对应的故障类型,采样率等信息了,所有的信息自包含在.json文件里,15个测试例,一个测试例对应一整个.json文件。 {"dataset": {"name": "XJTU-SY_Bearing_Datasets&quo…

Spring AI 系列2: Advisors增强器简介

一、Advisors简介 1.1 Advisors定义 Advisors 是在 AI 应用程序中处理请求和响应的拦截器。我们可以使用它们为提示流程设置额外的功能。例如,可以建立聊天历史、排除敏感词或为每个请求添加额外的上下文。 Spring AI的Advisor,本质上是一个拦截…

通过Func实现飞书应用通知消息加急处理

前言 在现代企业运作中,及时响应告警信息对保障系统的稳定性和业务的连续性至关重要。随着业务的数字化转型,越来越多的企业依赖于复杂的技术架构,这使得故障和异常事件的及时处理变得愈发重要。传统的告警通知方式往往存在响应不及时、信息…

【目标检测】【AAAI-2022】Anchor DETR

Anchor DETR: Query Design for Transformer-Based Object Detection 锚点DETR:基于Transformer的目标检测查询设计 论文链接 代码链接 摘要 在本文中,我们提出了一种基于Transformer的目标检测新型查询设计。此前的Transformer检测器中&am…

智慧工厂整体解决方案

该方案围绕智能工厂建设,阐述其基于工业 4.0 和数字化转型需求,通过物联网、大数据、人工智能等技术实现生产自动化、数据化管理及联网协同的特点。建设步骤包括评估现状、设定目标、制定方案、测试调整、实施计划及持续改进,需整合 MES、ERP 等软件系统与传感器、机器人等硬…

秋招Day12 - 计算机网络 - TCP

详细说一下TCP的三次握手机制 TCP的三次握手机制是为了在两个主机之间建立可靠的连接,这个机制确保两端的通信是同步的,并且在开始传输数据前,双方都做好了要通信的准备。 说说SYN的概念? SYN 是 TCP 协议中用来建立连接的一个标…