贪心算法实战3

news2025/6/2 0:00:59

文章目录

  • 前言
  • 区间问题
    • 跳跃游戏
    • 跳跃游戏II
    • 用最少数量的箭引爆气球
    • 无重叠区间
    • 划分字母区间
    • 合并区间
  • 最大子序和
  • 加油站
  • 监控二叉树

前言

今天继续带大家进行贪心算法的实战篇3,本章注意来解答一些运用贪心算法的比较难的问题,大家好好体会,怎么从构建局部最优到全局最优的。一文带大家弄懂。本文用于记录自己的学习过程,同时向大家进行分享相关的内容。本文内容参考于代码随想录同时包含了自己的许多学习思考过程,如果有错误的地方欢迎批评指正!

image-20250516170158923

区间问题

跳跃游戏

55. 跳跃游戏 - 力扣(LeetCode)

image-20250516171038433

**相关技巧:**其实跳跃游戏的解题思路就类似于一个搭桥的过程。如下所示,每一步都有个长度,我用着这个长度来搭桥,用来更新我能够最远到达的地方,如果能够到达终点,那么我们搭建的桥就肯定能够超过最大的下标。

image-20250528165639557

这道题目关键点在于:不用拘泥于每次究竟跳几步,而是看覆盖范围,覆盖范围内一定是可以跳过来的,不用管是怎么跳的。

class Solution:
    def canJump(self, nums: List[int]) -> bool:
        cover = 0
        if len(nums) == 1: return True
        i = 0
        # python不支持动态修改for循环中变量,使用while循环代替
        while i <= cover:
            cover = max(i + nums[i], cover)
            if cover >= len(nums) - 1: return True
            i += 1
        return False

跳跃游戏II

45. 跳跃游戏 II - 力扣(LeetCode)

image-20250516171100828

**相关技巧:**这题确实比刚才的跳跃游戏难了点,但其实本质上是一样的,这回题目说了肯定能够到达终点的。那我们考虑的就是怎么用最少的次数跳过去。

其实很简单,我们来看,2,3,1,1,4,从第一格开始我们能跳最远两步,然后我们跳的这两步之内,能够延伸我的桥,就是能跳的最远的,怎么让步数最少就是我们在我们能跳的格子内,哪一个能够让我们的桥延伸的更远,搭的更远就是我们需要的,最终得到的结果肯定就是最少的跳跃次数了。而且也很经典的贪心思想了。

class Solution:
    def jump(self, nums):
        cur_distance = 0  # 当前覆盖的最远距离下标
        ans = 0  # 记录走的最大步数
        next_distance = 0  # 下一步覆盖的最远距离下标
        
        for i in range(len(nums) - 1):  # 注意这里是小于len(nums) - 1,这是关键所在
            next_distance = max(nums[i] + i, next_distance)  # 更新下一步覆盖的最远距离下标
            if i == cur_distance:  # 遇到当前覆盖的最远距离下标
                cur_distance = next_distance  # 更新当前覆盖的最远距离下标
                ans += 1
        
        return ans

用最少数量的箭引爆气球

452. 用最少数量的箭引爆气球 - 力扣(LeetCode)

image-20250516171127042

**相关技巧:**如何用最少的弓箭呢?那不肯定就得是每次射掉重叠最多的气球,那最后用的肯定就是最少的弓箭了。

那重点来了,我们怎么去判定重叠的情况,去确定重叠的时候射哪个位置呢?

image-20250528172307610

其实就是确定其最右边界,而且射爆气球后,我们也不需要从中删掉,只需要向下一个遍历即可。

所以理解了之后,再看这道题就很容易解出来了。看代码就能深刻的理解了。首先先进行排序,然后遍历,找最右边界的过程,当超过了就加一支箭。

class Solution:
    def findMinArrowShots(self, points: List[List[int]]) -> int:
        if len(points) == 0: return 0
        points.sort(key=lambda x: x[0])
        result = 1
        for i in range(1, len(points)):
            if points[i][0] > points[i - 1][1]: # 气球i和气球i-1不挨着,注意这里不是>=
                result += 1     
            else:
                points[i][1] = min(points[i - 1][1], points[i][1]) # 更新重叠气球最小右边界
        return result

无重叠区间

435. 无重叠区间 - 力扣(LeetCode)

image-20250516171215848

**相关技巧:**来看这道题,我们要找的无重叠区间,这么看好像是没有什么思路。但是我们想一下,我们去射气球的时候找的是什么,重叠区间,那我们将重叠区间找出来了,直接总区间减去重叠区间,剩下的就是我们需要去移除的区间了。

所以我们要做的与用最少数量的箭引爆气球是一样的,首先按照左边界升序排列,我们在找出重叠的区间,注意这里仅仅有一个细节不一样,射气球的时候 i n t e r v a l s [ i ] [ 0 ] > i n t e r v a l s [ i − 1 ] [ 1 ] intervals[i][0] > intervals[i - 1][1] intervals[i][0]>intervals[i1][1]这里是不带等号的,因为那时候题目说是算重叠的,但是本题就得带等号了,因为在这题里面这就不算重叠了。

最后我们找出所有的重叠区间,让总区间减去重叠的区间就是我们需要去移除的区间了。

class Solution:
    def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
        if not intervals:
            return 0
        
        intervals.sort(key=lambda x: x[0])  # 按照左边界升序排序
        
        result = 1  # 不重叠区间数量,初始化为1,因为至少有一个不重叠的区间
        
        for i in range(1, len(intervals)):
            if intervals[i][0] >= intervals[i - 1][1]:  # 没有重叠
                result += 1
            else:  # 重叠情况
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1])  # 更新重叠区间的右边界
        
        return len(intervals) - result

划分字母区间

763. 划分字母区间 - 力扣(LeetCode)

image-20250516171235520

**相关技巧:**在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。

可以分为如下两步:

  • 统计每一个字符最后出现的位置
  • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点

一张图片你就能很清晰的懂得了,然后写出代码即可

image-20250529113708492

class Solution:
    def partitionLabels(self, s: str) -> List[int]:
        last_occurrence = {}  # 存储每个字符最后出现的位置
        for i, ch in enumerate(s):
            last_occurrence[ch] = i

        result = []
        start = 0
        end = 0
        for i, ch in enumerate(s):
            end = max(end, last_occurrence[ch])  # 找到当前字符出现的最远位置
            if i == end:  # 如果当前位置是最远位置,表示可以分割出一个区间
                result.append(end - start + 1)
                start = i + 1

        return result

合并区间

56. 合并区间 - 力扣(LeetCode)

image-20250516171256274

**相关技巧:**本题的本质其实还是判断重叠区间问题。其实还是一个套路,只不过区别就是判断区间重叠后的逻辑,本题是判断区间重贴后要进行区间合并。

所以一样的套路,先排序,让所有的相邻区间尽可能的重叠在一起,按左边界,或者右边界排序都可以,处理逻辑稍有不同。

按照左边界从小到大排序之后,如果 intervals[i][0] <= intervals[i - 1][1] 即intervals[i]的左边界 <= intervals[i - 1]的右边界,则一定有重叠。(本题相邻区间也算重贴,所以是<=)

class Solution:
    def merge(self, intervals):
        result = []
        if len(intervals) == 0:
            return result  # 区间集合为空直接返回

        intervals.sort(key=lambda x: x[0])  # 按照区间的左边界进行排序

        result.append(intervals[0])  # 第一个区间可以直接放入结果集中

        for i in range(1, len(intervals)):
            if result[-1][1] >= intervals[i][0]:  # 发现重叠区间
                # 合并区间,只需要更新结果集最后一个区间的右边界,因为根据排序,左边界已经是最小的
                result[-1][1] = max(result[-1][1], intervals[i][1])
            else:
                result.append(intervals[i])  # 区间不重叠

        return result

最大子序和

53. 最大子数组和 - 力扣(LeetCode)

image-20250516171317288

**相关技巧:**首先我们来看题目,我们需要求最大和的连续子数组,那么怎么去得到最大呢?很简单,我们需要保证当前的连续和是大于零的,这样我们加入下一个数的时候就不会拖累下一个数。这也就是贪心思想的体现。

比如说当前第一个-2,要加下一个1了,我们需要去加这个-2吗?之前的连续和都变成负数了,对于我们后面的找最大连续和来说一定会是个累赘。所以我们下一个就是1开始,然后加-3变成-2。又变成负数了,再从下一个重新开始。4加-1是3,虽然减少了,但是其还是正的,会对下一个数的累加有帮助,**当然了,我们这里会有个记录最大的,如果后面加起来成负数了,就会记录上4是最大的。**所以继续加2,变成5,再加1变成6,**这里会记录上,更新之后最大的是6的。**然后在加-5和4,变成5,虽然也是正的,但是之前记录了最大的就是6,所以我们的最大连续子数组和是6。

class Solution:
    def maxSubArray(self, nums):
        result = float('-inf')  # 初始化结果为负无穷大
        count = 0
        for i in range(len(nums)):
            count += nums[i]
            if count > result:  # 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count
            if count <= 0:  # 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
                count = 0
        return result

加油站

134. 加油站 - 力扣(LeetCode)

image-20250516171341261

**相关技巧:**首先来看题目,我们进行分析:如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。每个加油站的剩余量rest[i]为gas[i] - cost[i]。

i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。

image-20250529134019678

class Solution:
    def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
        curSum = 0  # 当前累计的剩余油量
        totalSum = 0  # 总剩余油量
        start = 0  # 起始位置
        
        for i in range(len(gas)):
            curSum += gas[i] - cost[i]
            totalSum += gas[i] - cost[i]
            
            if curSum < 0:  # 当前累计剩余油量curSum小于0
                start = i + 1  # 起始位置更新为i+1
                curSum = 0  # curSum重新从0开始累计
        
        if totalSum < 0:
            return -1  # 总剩余油量totalSum小于0,说明无法环绕一圈
        return start

监控二叉树

968. 监控二叉树 - 力扣(LeetCode)

image-20250516171401403

**相关技巧:**我们从题目中其实能看出来,摄像头是不会放在叶子节点的,因为摄像头能够覆盖上中下三层,所以放在叶子节点或者头节点就会特别浪费,其次我们遍历从叶子节点开始往上遍历,为什么不从头节点呢?因为哪怕头节点放一个摄像头就只浪费一个,但是叶子节点的话那就是指数级别的了。所以我们的遍历顺序选择后序遍历。

我们用三个数字来表示不同的状态,这样方便我们判定是否放摄像头:

  • 0:该节点无覆盖
  • 1:本节点有摄像头
  • 2:本节点有覆盖

主要有如下四类情况:

  • 情况1:左右节点都有覆盖

  • 情况2:左右节点至少有一个无覆盖的情况

  • 情况3:左右节点至少有一个有摄像头

  • 情况4:头结点没有覆盖

所以我们需要加摄像头的情况只有情况1和情况4。

class Solution:
         # Greedy Algo:
        # 从下往上安装摄像头:跳过leaves这样安装数量最少,局部最优 -> 全局最优
        # 先给leaves的父节点安装,然后每隔两层节点安装一个摄像头,直到Head
        # 0: 该节点未覆盖
        # 1: 该节点有摄像头
        # 2: 该节点有覆盖
    def minCameraCover(self, root: TreeNode) -> int:
        # 定义递归函数
        result = [0]  # 用于记录摄像头的安装数量
        if self.traversal(root, result) == 0:
            result[0] += 1

        return result[0]

        
    def traversal(self, cur: TreeNode, result: List[int]) -> int:
        if not cur:
            return 2

        left = self.traversal(cur.left, result)
        right = self.traversal(cur.right, result)

        # 情况1: 左右节点都有覆盖
        if left == 2 and right == 2:
            return 0

        # 情况2:
        # left == 0 && right == 0 左右节点无覆盖
        # left == 1 && right == 0 左节点有摄像头,右节点无覆盖
        # left == 0 && right == 1 左节点无覆盖,右节点有摄像头
        # left == 0 && right == 2 左节点无覆盖,右节点覆盖
        # left == 2 && right == 0 左节点覆盖,右节点无覆盖
        if left == 0 or right == 0:
            result[0] += 1
            return 1

        # 情况3:
        # left == 1 && right == 2 左节点有摄像头,右节点有覆盖
        # left == 2 && right == 1 左节点有覆盖,右节点有摄像头
        # left == 1 && right == 1 左右节点都有摄像头
        if left == 1 or right == 1:
            return 2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2393250.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实测,大模型谁更懂数据可视化?

大家好&#xff0c;我是 Ai 学习的老章 看论文时&#xff0c;经常看到漂亮的图表&#xff0c;很多不知道是用什么工具绘制的&#xff0c;或者很想复刻类似图表。 实测&#xff0c;大模型 LaTeX 公式识别&#xff0c;出乎预料 前文&#xff0c;我用 Kimi、Qwen-3-235B-A22B、…

Linux入门(十一)进程管理

Linux 中每个执行的程序都称为一个进程&#xff0c;每个进程都分配一个ID号&#xff08;PID&#xff09; 每个进程都可能以两种方式存在&#xff0c;前台&#xff08;屏幕上可以操作的&#xff09;和后台&#xff08;屏幕上无法看到的&#xff09;&#xff0c;一般系统的服务都…

【技能篇】RabbitMQ消息中间件面试专题

1. RabbitMQ 中的 broker 是指什么&#xff1f;cluster 又是指什么&#xff1f; 2. 什么是元数据&#xff1f;元数据分为哪些类型&#xff1f;包括哪些内容&#xff1f;与 cluster 相关的元数据有哪些&#xff1f;元数据是如何保存的&#xff1f;元数据在 cluster 中是如何分布…

Linux研学-环境搭建

一 概述 1 Linux 概述 Linux系统由内核、Shell、文件系统、应用程序及系统库等关键部分组成。内核作为核心&#xff0c;管理硬件资源与系统服务&#xff1b;Shell提供用户与系统交互的命令行界面&#xff0c;让用户能便捷执行操作&#xff1b;文件系统负责数据的存储、组织与管…

Ubuntu系统下可执行文件在桌面单击运行教程

目录 ​编辑 操作环境&#xff1a;这个可执行文件在原目录下还有它的依赖文件 1&#xff0c;方法1&#xff1a;创建启动脚本 操作步骤​&#xff1a; &#xff08;1&#xff09;​​在桌面创建脚本文件​​&#xff08;如 run_main_improve.sh&#xff09;&#xff1a; ​…

Linux之文件进程间通信信号

Linux之文件&进程间通信&信号 文件文件描述符文件操作重定向缓冲区一切皆文件的理解文件系统磁盘物理结构&块文件系统结构 软硬链接 进程间通信匿名管道命名管道system V共享内存 信号 文件 首先&#xff0c;Linux下一切皆文件。对于大量的文件&#xff0c;自然要…

代码随想录算法训练营 Day61 图论ⅩⅠ Floyd A※ 最短路径算法

图论 题目 97. 小明逛公园 本题是经典的多源最短路问题。 在这之前我们讲解过&#xff0c;dijkstra朴素版、dijkstra堆优化、Bellman算法、Bellman队列优化&#xff08;SPFA&#xff09; 都是单源最短路&#xff0c;即只能有一个起点。 而本题是多源最短路&#xff0c;即求多…

改写自己的浏览器插件工具 myChromeTools

1. 起因&#xff0c; 目的: 前面我写过&#xff0c; 自己的一个浏览器插件小工具 最近又增加一个小功能&#xff0c;可以自动滚动页面&#xff0c;尤其是对于那些瀑布流加载的网页。最新的代码都在这里 2. 先看效果 3. 过程: 代码 1, 模拟鼠标自然滚动 // 处理滚动控制逻辑…

python-pptx去除形状默认的阴影

文章目录 效果原理1. 阴影继承机制解析2. XML层操作细节3. 注意事项 扩展应用1. 批量去除阴影2. 复合效果控制 效果 右边这个是直接添加一个形状。可以看到它会默认被赋予一个阴影。 然而&#xff0c;这个东西在特定的场合&#xff0c;其实是我们所不需要的。 那怎么把这个阴…

kuboard自带ETCD存储满了处理方案

一、前言 当运行 ETCD 日志报 Erro: mvcc database space exceeded 时&#xff0c;说明 ETCD 存储不足了&#xff08;默认 ETCD 存储是 2G&#xff09;&#xff0c;配额会触发告警&#xff0c;然后 Etcd 系统将进入操作受限的维护模式。 通过下面命令可以查看 ETCD 存储使用情…

SpringBoot+tabula+pdfbox解析pdf中的段落和表格数据

一、前言 在日常业务需求中&#xff0c;往往会遇到解析pdf文件中的段落或者表格数据的需求。 常见的做法是使用 pdfbox 来做&#xff0c;但是它只能提取文本数据&#xff0c;没有我们在文件页面上面的那种结构化组织&#xff0c;文本通常是散乱的包含各种换行回车空格等格式&a…

GitHub push失败解决办法-fatal: unable to access ‘https://github.com/xxx

问题描述&#xff1a; 问题解决&#xff1a; 1、首先查找自己电脑的代理地址和端口 windows教程如下&#xff1a; 1、搜索控制面板-打开Internet选项 2、点击局域网设置&#xff1a; 3、如图为地址和端口号 即可获得本机地址和端口号 2、根据上一步获得的本机地址和端口号为…

电商平台 API、数据抓取与爬虫技术的区别及优势分析

一、技术定义与核心原理 电商平台 API&#xff08;应用程序编程接口&#xff09; 作为平台官方提供的标准化数据交互通道&#xff0c;API 通过 HTTP 协议实现不同系统间的结构化数据传输。开发者需申请授权&#xff08;如 API 密钥&#xff09;&#xff0c;按照文档规范调用接口…

单卡4090部署Qwen3-32B-AWQ(4bit量化)-vllm

单卡4090部署Qwen3-32B-AWQ(4bit量化) 模型&#xff1a;Qwen3-32B-AWQ(4bit量化) 显卡&#xff1a;4090 1 张 python版本 python 3.12 推理框架“vllm 重要包的版本 vllm0.9.0创建GPU云主机 这里我使用的是优云智算平台的GPU&#xff0c;使用链接可以看下面的 https://blog.…

漫画Android:Handler机制是怎么实现的?

线程之间通信会用到Handler&#xff0c;比如&#xff0c;在子线程中进行耗时的网络请求任务&#xff0c;子线程在获取到数据后&#xff0c;更新界面的时候就需要用到Handler&#xff1b; 子线程在获取到数据后&#xff0c;不直接去更新 界面&#xff0c;而是把数据通过一个消息…

多部手机连接同一wifi的ip一样吗?如何更改ip

通常情况下&#xff0c;多部手机连接同一个WiFi时&#xff0c;它们的IP地址是各不相同的&#xff08;在局域网内&#xff09;。但是&#xff0c;从互联网&#xff08;外网&#xff09;的角度看&#xff0c;它们共享同一个公网IP地址。让我详细解释一下&#xff0c;并说明如何更…

飞牛fnNAS的Docker应用之迅雷篇

目录 一、“迅雷”应用安装 二、启动迅雷 三、迅雷账号登录 四、修改“迅雷”下载保存路径 1、下载路径准备 2、停止“迅雷”Docker容器 3、修改存储位置 4、重新启动Docker容器 5、再次“启用”迅雷 五、测试 1、在PC上添加下载任务 2、手机上管理 3、手机添加下…

SQLMesh 用户定义变量详解:从全局到局部的全方位配置指南

SQLMesh 提供了灵活的多层级变量系统&#xff0c;支持从全局配置到模型局部作用域的变量定义。本文将详细介绍 SQLMesh 的四类用户定义变量&#xff08;global、gateway、blueprint 和 local&#xff09;以及宏函数的使用方法。 一、变量类型概述 SQLMesh 支持四种用户定义变量…

inviteflood:基于 UDP 的 SIP/SDP 洪水攻击工具!全参数详细教程!Kali Linux教程!

简介 一种通过 UDP/IP 执行 SIP/SDP INVITE 消息泛洪的工具。该工具已在 Linux Red Hat Fedora Core 4 平台&#xff08;奔腾 IV&#xff0c;2.5 GHz&#xff09;上测试&#xff0c;但预计该工具可在各种 Linux 发行版上成功构建和执行。 inviteflood 是一款专注于 SIP 协议攻…

Visual Studio 2022 设置自动换行

Visual Studio 2022 设置自动换行 一、在 Visual Studio 菜单栏上&#xff0c;选择 工具>选项二、选择“文本编辑器”>“所有语言”>“常规” 全局设置此选项。 一、在 Visual Studio 菜单栏上&#xff0c;选择 工具>选项 二、选择“文本编辑器”>“所有语言”&…