角度回归——八参数检测四边形Gliding Vertex

news2025/7/24 3:58:39

文章目录

  • 一、介绍
    • (一)五参数检测方法( 基于角度)
    • (二)八参数检测方法(point-based)的边界
  • 二、方案分析
    • (一)问题定义
    • (二)方案
    • (三)Gliding Vertex方案的问题
  • 参考

一、介绍

遥感目标检测Gliding Vertex 是四边形检测器,而且都考虑到了顺序标签点(sequential label points)的问题。我们先给出这两篇文章的链接:

  • https://arxiv.org/abs/1911.09358

(一)五参数检测方法( 基于角度)

在当前常用的旋转检测框的角度定义下,由于存在旋转角度的边界问题,会产生不必要的损失!
在这里插入图片描述

(二)八参数检测方法(point-based)的边界

如果是蓝框是anchor,红框是ground-truth,那么通过点的排序之后,实际和理想的回归方式是一样的(按照回归的距离定义)
在这里插入图片描述

二、方案分析

(一)问题定义

首先我们要了解一下为什么在做四边形检测前要对四个角点进行排序。举一个简单的例子,如果一个四边形的ground-truth是(x1,y1,x2,y2,x3,y3,x4,y4)并且所有的ground-truth并不是按一定规则顺序标注的,那么检测器有可能给出的预测结果是(x2,y2,x3,y3,x4,y4,x1,y1)。其实这两个是框是完全重合的,但是网络训练算损失的时候并不知道,它会按对应位置计算损失,此时的损失值并不为0甚至很大。

(二)方案

基于上述问题:
1. Gliding Vertex的Head设计
Gliding Vertex文章通过改变框的表示方式避免了排序的麻烦。 先检测水平框,这个是没有序列问题的,然后学习水平框四个角点的偏移量来达到四边形检测的目的,其实这里的(偏移量,对应的水平框的点)配对就有排序的意思了。

原文是这样写的:By limiting the offset on the corresponding side of horizontal bounding box, we may facilitate offset learning and also avoid the confusion for sequential label points in directly regressing the four vertices of oriented objects

在这里插入图片描述

Gliding Vertex通过水平框滑动偏移的方式预测旋转框,避免了直接回归无序角点的问题。其head结构包含以下输出分支:

  • 分类分支(Cls Score):预测目标类别。
  • 水平框回归分支:回归水平外接矩形 ( c e n t e r x , c e n t e r y , w , h ) (center_x, center_y, w, h) (centerx,centery,w,h)
  • 偏移比例分支(Alpha):预测四个角点相对于水平框对应顶点的偏移比例 ( α 1 , α 2 , α 3 , α 4 ) (\alpha_1, \alpha_2, \alpha_3, \alpha_4) (α1,α2,α3,α4),通过 s i = α i ⋅ w s_i = \alpha_i \cdot w si=αiw计算实际偏移量。
  • 倾斜因子(Obliquity Factor):定义为旋转框面积与水平框面积的比值 r = ∣ O ∣ ∣ B h ∣ r = \frac{|O|}{|B_h|} r=BhO,用于区分近水平目标( r ≈ 1 r \approx 1 r1时退化为水平框)和倾斜目标。

关键点顺序控制
通过固定水平框的顶点顺序(左上→右上→右下→左下),间接约束偏移量的对应关系,避免了角点排序问题。

(三)Gliding Vertex方案的问题

Gliding Vertex 预测水平框时存在问题,因此提出 obliquity factor的预测值,来控制当前所要预测目标是否可以直接采用(x,y,w,h)。
在这里插入图片描述

参考

https://zhuanlan.zhihu.com/p/108185873

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2386450.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI助力,制作视频裁剪软件

1. 视频裁剪软件套路多 最近再做一些测试,经常需要录屏什么的,有时候录制的时长视频,需要裁剪,比如去掉开头一些帧或者结尾的一些帧,就想保留关键点。但是网上下的一些软件,打开一用都是要付费的。所以想着…

[实战]用户系统-2-完善登录和校验以及VIP

这里写目录标题 完善登录和校验新建lib-auth创建配置引入配置和JWT完善登录基本登录单点登录多点登录校验和拦截编写守卫编写装饰器使用完善VIP修改mysql模型编写vip守卫代码进度完善登录和校验 之前我们模拟过用户的登录,本节将实现token的生成,校验,redis做黑名单。我们需…

印度语言指令驱动的无人机导航!UAV-VLN:端到端视觉语言导航助力无人机自主飞行

作者:Pranav Saxena, Nishant Raghuvanshi and Neena Goveas单位:比尔拉理工学院(戈瓦校区)论文标题:UAV-VLN: End-to-End Vision Language guided Navigation for UAVs论文链接:https://arxiv.org/pdf/250…

mysql都有哪些锁?

MySQL中的锁机制是确保数据库并发操作正确性和一致性的重要组成部分,根据锁的粒度、用途和特性,可以分为多种类型。以下是MySQL中常见的锁及其详细说明: 一、按锁的粒度划分 行级锁(Row-level Locks) 描述:…

HarmonyOS NEXT 使用 relationalStore 实现数据库操作

大家好,我是V哥。在 HarmonyOS NEXT 开发中,如何操作数据库,V 哥在测试中总结了以下学习代码,分享给你,如何想要系统学习鸿蒙开发,可以了解一下 V 哥最近刚刚上架出版的 《HarmonyOS 鸿蒙开发之路 卷2 从入…

R语言学习--Day04--数据分析技巧

在清洗完数据,在对数据分析前,我们要懂得先梳理一下我们的逻辑,即数据是什么形式的,要进行哪种分析,有可能呈现什么特点,进而再想怎么处理数据去画图可以最大程度地凸显我们要的特点。 一般来讲&#xff0…

SRS流媒体服务器之RTC播放环境搭建

环境概述 srs版本 commit 44f0c36b61bc7c3a1d51cb60be0ec184c840f09d Author: winlin <winlinvip.126.com> Date: Wed Aug 2 10:34:41 2023 0800Release v4.0-r5, 4.0 release5, v4.0.271, 145574 lines. rtc.conf # WebRTC streaming config for SRS. # see full.…

Android 性能优化入门(三)—— ANR 问题分析

需要清楚 ANR 的概念、类型、如何产生以及如何定位分析。 1、概述 1.1 ANR 的概念 ANR&#xff08;Application Not Responding&#xff09;应用程序无响应。如果你应用程序在主线程被阻塞太长时间&#xff0c;就会出现 ANR&#xff0c;通常出现 ANR&#xff0c;系统会弹出一…

鸿蒙Flutter实战:22-混合开发详解-2-Har包模式引入

以 Har 包的方式加载到 HarmonyOS 工程 创建工作 创建一个根目录 mkdir ohos_flutter_module_demo这个目录用于存放 flutter 项目和鸿蒙项目。 创建 Flutter 模块 首先创建一个 Flutter 模块&#xff0c;我们选择与 ohos_app 项目同级目录 flutter create --templatemodu…

游戏引擎学习第302天:使用精灵边界进行排序

在 game_render_group.cpp 中&#xff1a;正确计算 GetBoundFor() 里的 SpriteBound 值 我们正在进行游戏的排序问题调试。虽然这是一个二维游戏&#xff0c;但包含一些三维元素&#xff0c;因此排序变得比较复杂和棘手。混合二维和三维元素时&#xff0c;需要依赖一些比较主观…

SpringBoot+MyBatis

切换数据库连接词 引入数据库连接词的依赖&#xff0c;配置数据库连接池的类型&#xff1b; 编写测试类&#xff1a; package org.example.threelayerdecouplingdomeapplication2;import org.example.threelayerdecouplingdomeapplication2.mapper.UserMapper; import org.ex…

wireshark: Display Filter Reference

https://www.wireshark.org/docs/dfref/// 这个里面的扩展功能还是很强大&#xff0c;可以帮着问题分析。支持大量的自定义化的字段读取功能&#xff0c;支持很多的协议。 https://www.wireshark.org/docs/dfref///f/frame.html frame.time_delta Time delta from previous ca…

Java基础 Day19

一、泛型&#xff08;JDK5引入&#xff09; 1、基本概念 在编译阶段约束操作的数据类型&#xff0c;并进行检查 好处&#xff1a;统一数据类型&#xff0c;将运行期的错误提升到了编译期 泛型的默认类型是 Object 2、泛型类 在创建类的时候写上泛型 在创建具体对象的时候…

VMware+Windows 11 跳过安装阶段微软账号登录

OOBE 阶段 来到这里 断开网络适配器 VMware右下角&#xff0c;点击网络适配器&#xff0c;断开连接 同时按下 Shift 和 F10 &#xff0c;打开命令提示符(cmd.exe) 输入 oobe\BypassNRO.cmd 并回车 接下来正常进行即可

HarmonyOS开发-应用间跳转

1. HarmonyOS开发-应用间跳转 在鸿蒙中,我们再开发过程当中或多或少都会遇见想要从一个App的页面跳转至另一个App的页面,这个时候我们要怎么进行跳转呢,其实在HarmonyOS开发者文档中只需要用到Want对象和startAbility()方法进行跳转就可以了。 1.1. 实现 (1)我们要先准备两个…

校园二手交易系统

该交易平台分为两部分&#xff0c;前台和后台。用户在前台进行商品选购以及交易&#xff1b;管理员登录后台可以对商品进行维护&#xff0c;主要功能包含&#xff1a; 后台系统的主要功能模块如下&#xff1a; 登录功能、注册功能、后台首页 系统设置&#xff1a; 菜单管理、…

基于pycharm,python,flask,sklearn,orm,mysql,在线深度学习sql语句检测系统

详细视频:【基于pycharm,python,flask,sklearn,orm,mysql&#xff0c;在线深度学习sql语句检测系统-哔哩哔哩】 https://b23.tv/JLQDwNn

upload-labs通关笔记-第17关文件上传之二次渲染gif格式

系列目录 upload-labs通关笔记-第1关 文件上传之前端绕过&#xff08;3种渗透方法&#xff09; upload-labs通关笔记-第2关 文件上传之MIME绕过-CSDN博客 upload-labs通关笔记-第3关 文件上传之黑名单绕过-CSDN博客 upload-labs通关笔记-第4关 文件上传之.htacess绕过-CSDN…

STM32中的SPI通信协议

IIC和SPI的对比 IIC是半双工的通信&#xff0c;无法同时收发信息&#xff1b;SPI是全双工通讯&#xff0c;可以同时收发信息&#xff1b;IIC的通讯协议较复杂&#xff0c;而SPI通讯协议较简单&#xff1b;IIC需要通过地址选择从机&#xff0c;而SPI只主要一个引脚即可选中从机…

从版本控制到协同开发:深度解析 Git、SVN 及现代工具链

前言&#xff1a;在当今软件开发的浪潮中&#xff0c;版本控制与协同开发无疑扮演着举足轻重的角色。从最初的单兵作战到如今大规模团队的高效协作&#xff0c;一套成熟且得力的版本控制系统以及围绕其构建的现代工具链&#xff0c;已然成为推动软件项目稳步前行的关键引擎。今…