V9数据库替换授权

news2025/5/27 12:05:56

文章目录

  • 环境
  • 文档用途
  • 详细信息

环境

系统平台:Linux x86-64 Red Hat Enterprise Linux 7
版本:9.0

文档用途

1、本文档用于指导V9数据库替换授权。

2、V9数据库授权文件为license.dat。

详细信息

1、上传新的授权文件到服务器并修改授权文件属主为highgo

chown highgo. /hgdata/license.dat

2、查找授权目录license文件夹

授权目录license文件夹在安装目录下

①可以通过环境变量查看安装目录

[highgo@slave ~]$ echo $HGDB_HOME

/hgdata/highgo/hgdb-enterprise-9.1.1

②或者find命令查找license文件夹

[highgo@slave ~]$ find / -iname license -print

/hgdata/highgo/hgdb-enterprise-9.1.1/license

3、替换授权

①备份之前授权文件

[highgo@slave ~]$ mv /hgdata/highgo/hgdb-enterprise-9.1.1/license/license.dat  /hgdata/highgo/hgdb-enterprise-9.1.1/license/license.dat.bak

②放置新的授权

[highgo@slave ~]$ mv /hgdata/license.dat  /hgdata/highgo/hgdb-enterprise-9.1.1/license/

③授权生效

[highgo@slave ~]$ pg_ctl reload

server signaled

④查看授权到期时间

[highgo@slave ~]$ licchk

License version: 1.2

License serial: A20230222N004656

License status: normal

User info: xxx集团有限公司

License auth type: formal

License used type: 交付

Create time: 20231211日

Final time: 20991231日

Highgo database version: hgdb-enterprise-9.1.1

Project info: xxx集团有限公司信息化项目(一期)

Max connections: 0

Max CPU cores: unlimit

Default database name: highgo

Default database user: highgo

Default database port: 5866

Hardware code: 00000000000000000000000000000000

4、授权命令其他信息

①查看授权文件信息(注意:此命令并不会将授权导入到数据库)

[highgo@slave ~]$ licchk -f /hgdata/license.dat

License version: 1.2

License serial: A20230222N004656

License status: normal

User info: xxx集团有限公司

License auth type: formal

License used type: 交付

Create time: 2023年12月11日

Final time: 2099年12月31日

Highgo database version: hgdb-enterprise-9.1.1

Project info: xxx集团有限公司信息化项目(一期)

Max connections: 0

Max CPU cores: unlimit

Default database name: highgo

Default database user: highgo

Default database port: 5866

Hardware code: 00000000000000000000000000000000

②查看授权命令参数

[highgo@slave ~]$ licchk --help

Usage:

  licchk [OPTION]... [DATADIR]

Options:

  -l, --list                list enabled function items

  -a, --all                 all functional items

  -v, --view                show desc information

  -f, --filename=xxx.dat    set license filename

  -c, --check=xxx.txt       check hardware code, then exit.

  -U, --username            obtain the username from the license file.

  -P, --port                obtain the port from the license file.

  -V, --version             output version information, then exit

  -?, --help                show this help, then exit

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2386048.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

勇闯Chromium—— Chromium的多进程架构

问题 构建一个永不崩溃或挂起的渲染引擎几乎是不可能的,构建一个绝对安全的渲染引擎也几乎是不可能的。 从某种程度上来说,2006 年左右的网络浏览器状态与过去单用户、协作式多任务操作系统的状况类似。正如在这样的操作系统中,一个行为不端的应用程序可能导致整个系统崩溃…

软件质量保证与测试实验

课程  软件质量保证与测试 目的&#xff1a;练习软件测试中白盒测试方法 内容&#xff1a; 测试如下程序段&#xff1a; #include <stdio.h>int main() {int i 1, n1 0, n2 0;float sum 0.0;float average;float score[100];printf("请输入分…

历年华东师范大学保研上机真题

2025华东师范大学保研上机真题 2024华东师范大学保研上机真题 2023华东师范大学保研上机真题 在线测评链接&#xff1a;https://pgcode.cn/school?classification1 简单一位数代数式计算 题目描述 给一个小学生都会算的1位数与1位数运算的代数式&#xff0c;请你求出这个表…

在机器学习中,L2正则化为什么能够缓过拟合?为何正则化等机制能够使一个“过度拟合训练集”的模型展现出更优的泛化性能?正则化

在现代机器学习的发展历程中&#xff0c;过拟合&#xff08;Overfitting&#xff09;始终是亟需克服的重要挑战。其表现如同在训练数据上构建过度复杂的映射函数&#xff0c;虽能实现近乎完美的拟合&#xff0c;但其泛化能力却显著受限&#xff0c;导致模型在测试集或实际应用中…

k8s部署ELK补充篇:kubernetes-event-exporter收集Kubernetes集群中的事件

k8s部署ELK补充篇&#xff1a;kubernetes-event-exporter收集Kubernetes集群中的事件 文章目录 k8s部署ELK补充篇&#xff1a;kubernetes-event-exporter收集Kubernetes集群中的事件一、kubernetes-event-exporter简介二、kubernetes-event-exporter实战部署1. 创建Namespace&a…

C++性能相关的部分内容

C性能相关的部分内容 与底层硬件紧密结合 大端存储和小端存储&#xff08;硬件概念&#xff09; C在不同硬件上运行的结果可能不同 比如&#xff1a;输入01234567&#xff0c;对于大端存储的硬件会先在较大地址上先进行存储&#xff0c;而对于小端存储的硬件会先在较小地址上…

AI进行提问、改写、生图、联网搜索资料,嘎嘎方便!

极客侧边栏-AI板块 目前插件内已接入DeepSeek-R1满血版、Qwen3满血版 、豆包/智谱最新发布的推理模型以及各种顶尖AI大模型&#xff0c;并且目前全都可以免费不限次数使用&#xff0c;秒回不卡顿&#xff0c;联网效果超好&#xff01; 相比于市面上很多AI产品&#xff0c;极客…

GStreamer开发笔记(四):ubuntu搭建GStreamer基础开发环境以及基础Demo

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://blog.csdn.net/qq21497936/article/details/147714800 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、O…

2021年认证杯SPSSPRO杯数学建模A题(第二阶段)医学图像的配准全过程文档及程序

2021年认证杯SPSSPRO杯数学建模 A题 医学图像的配准 原题再现&#xff1a; 图像的配准是图像处理领域中的一个典型问题和技术难点&#xff0c;其目的在于比较或融合同一对象在不同条件下获取的图像。例如为了更好地综合多种信息来辨识不同组织或病变&#xff0c;医生可能使用…

CV中常用Backbone-3:Clip/SAM原理以及代码操作

前面已经介绍了简单的视觉编码器&#xff0c;这里主要介绍多模态中使用比较多的两种backbone&#xff1a;1、Clip&#xff1b;2、SAM。对于这两个backbone简单介绍基本原理&#xff0c;主要是讨论使用这个backbone。 1、CV中常用Backbone-2&#xff1a;ConvNeXt模型详解 2、CV中…

RPC 协议详解、案例分析与应用场景

一、RPC 协议原理详解 RPC 协议的核心目标是让开发者像调用本地函数一样调用远程服务&#xff0c;其实现过程涉及多个关键组件与流程。 &#xff08;一&#xff09;核心组件 客户端&#xff08;Client&#xff09;&#xff1a;发起远程过程调用的一方&#xff0c;它并不关心调…

dify-plugin-daemon的.env配置文件

源码位置&#xff1a;dify-plugin-daemon\.env 本文使用dify-plugin-daemon v0.1.0版本&#xff0c;主要总结了dify-plugin-daemon\.env配置文件。为了本地调试方便&#xff0c;采用本地运行时环境WSL2Ubuntu22.04方式运行dify-plugin-daemon服务。 一.服务器基本配置 服务器…

(九)PMSM驱动控制学习---无感控制之高阶滑膜观测器

在之前的文章中&#xff0c;我们介绍了永磁同步电机无感控制中的滑模观测器&#xff0c;但是同时我们也认识到了他的缺点&#xff1a;因符号函数带来的高频切换分量&#xff0c;使用低通滤波器引发相位延迟&#xff1b;在本篇文章&#xff0c;我们将会介绍高阶滑模观测器的无感…

Devicenet主转Profinet网关助力改造焊接机器人系统智能升级

某汽车零部件焊接车间原有6台焊接机器人&#xff08;采用Devicenet协议&#xff09;需与新增的西门子S7-1200 PLC&#xff08;Profinet协议&#xff09;组网。若更换所有机器人控制器或上位机系统&#xff0c;成本过高且停产周期长。 《解决方案》 工程师选择稳联技术转换网关…

《STL--list的使用及其底层实现》

引言&#xff1a; 上次我们学习了容器vector的使用及其底层实现&#xff0c;今天我们再来学习一个容器list&#xff0c; 这里的list可以参考我们之前实现的单链表&#xff0c;但是这里的list是双向循环带头链表&#xff0c;下面我们就开始list的学习了。 一&#xff1a;list的…

python的pip怎么配置的国内镜像

以下是配置pip国内镜像源的详细方法&#xff1a; 常用国内镜像源列表 清华大学&#xff1a;https://pypi.tuna.tsinghua.edu.cn/simple阿里云&#xff1a;https://mirrors.aliyun.com/pypi/simple中科大&#xff1a;https://pypi.mirrors.ustc.edu.cn/simple华为云&#xff1…

PCB 通孔是电容性的,但不一定是电容器

哼&#xff1f;……这是什么意思&#xff1f;…… 多年来&#xff0c;流行的观点是 PCB 通孔本质上是电容性的&#xff0c;因此可以用集总电容器进行建模。虽然当信号的上升时间大于或等于过孔不连续性延迟的 3 倍时&#xff0c;这可能是正确的&#xff0c;但我将向您展示为什…

公有云AWS基础架构与核心服务:从概念到实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 &#xff08;初学者技术专栏&#xff09; 一、基础概念 定义&#xff1a;AWS&#xff08;Amazon Web Services&#xff09;是亚马逊提供的云计算服务&a…

Python60日基础学习打卡D35

import torch import torch.nn as nn import torch.optim as optim from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import time import matplotlib.pyplot as plt# 设置GPU设…

目标检测 RT-DETR(2023)详细解读

文章目录 主干网络&#xff1a;Encoder&#xff1a;不确定性最小Query选择Decoder网络&#xff1a; 将DETR扩展到实时场景&#xff0c;提高了模型的检测速度。网络架构分为三部分组成&#xff1a;主干网络、混合编码器、带有辅助预测头的变换器编码器。具体来说&#xff0c;先利…