Java虚拟机面试题:内存管理(上)

news2025/7/14 11:01:19

🧑 博主简介:CSDN博客专家历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程高并发设计Springboot和微服务,熟悉LinuxESXI虚拟化以及云原生Docker和K8s,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。
技术合作请加本人wx(注明来自csdn):foreast_sea

在这里插入图片描述


在这里插入图片描述

Java虚拟机面试题:内存管理(上)

1. 能说一下 JVM 的内存区域吗?

按照 Java 的虚拟机规范,JVM 的内存区域(JVM 的内存结构/JVM 运行时数据区)可以细分为程序计数器虚拟机栈本地方法栈方法区等。

在这里插入图片描述

其中方法区是线程共享的,虚拟机栈本地方法栈程序计数器是线程私有的。

介绍一下程序计数器?

程序计数器(Program Counter Register)也被称为 PC 寄存器,是一块较小的内存空间。它可以看作是当前线程所执行的字节码行号指示器。

介绍一下 Java 虚拟机栈?

Java 虚拟机栈(Java Virtual Machine Stack),通常指的就是“栈”,它的生命周期与线程相同。

当线程执行一个方法时,会创建一个对应的栈帧,用于存储局部变量表操作数栈动态链接方法出口等信息,然后栈帧会被压入栈中。当方法执行完毕后,栈帧会从栈中移除。

在这里插入图片描述

一个什么都没有的空方法,完全空的参数什么都没有,那局部变量表里有没有变量?

对于静态方法,由于不需要访问实例对象(this),因此在局部变量表中不会有任何变量。

对于非静态方法,即使是一个完全空的方法,局部变量表中也会有一个用于存储 this 引用的变量。this 引用指向当前实例对象,在方法调用时被隐式传入。

比如说有这样一段代码:

public class VarDemo1 {
    public void emptyMethod() {
        // 什么都没有
    }

    public static void staticEmptyMethod() {
        // 什么都没有
    }
}

javap -v VarDemo1 命令查看编译后的字节码:

在非静态方法 emptyMethod 的输出中,你会看到类似这样的内容:

二哥的 Java 进阶之路:javap emptyMethod

这里的 locals=1 表示局部变量表有一个变量,即 this,Slot 0 位置存储了 this 引用。

而在静态方法 staticEmptyMethod 的输出中,你会看到类似这样的内容:

二哥的 Java 进阶之路:javap staticEmptyMethod

这里的 locals=0 表示局部变量表为空,因为静态方法没有 this 引用,也没有其他局部变量。

介绍一下本地方法栈?

本地方法栈(Native Method Stacks)与虚拟机栈相似,区别在于虚拟机栈是为 JVM 执行 Java 编写的方法服务的,而本地方法栈是为 Java 调用本地(native)方法服务的,由 C/C++ 编写。

在本地方法栈中,主要存放了 native 方法的局部变量、动态链接和方法出口等信息。当一个 Java 程序调用一个 native 方法时,JVM 会切换到本地方法栈来执行这个方法。

介绍一下本地方法栈的运行场景?

当 Java 应用需要与操作系统底层或硬件交互时,通常会用到本地方法栈。

比如调用操作系统的特定功能,如内存管理、文件操作、系统时间、系统调用等。

举例:System.currentTimeMillis() 就是调用本地方法来获取操作系统的当前时间。

二哥的Java 进阶之路:currentTimeMillis方法源码

再比如 JVM 自身的一些底层功能也需要通过本地方法来实现。像 Object 类中的 hashCode() 方法、clone() 方法等。

二哥的Java 进阶之路:hashCode方法源码

native 方法解释一下?

Native 方法是在 Java 中通过 native 关键字声明的,用于调用非 Java 语言(如 C/C++)编写的代码。Java 可以通过 JNI(Java Native Interface)与底层系统、硬件设备、或高性能的本地库进行交互。

介绍一下 Java 堆?

堆是 JVM 中最大的一块内存区域,被所有线程共享,在 JVM 启动时创建,主要用来存储对象的。

在这里插入图片描述

Java 中“几乎”所有的对象都会在堆中分配,堆也是垃圾收集器管理的目标区域,因此一些资料中也会把 Java 堆称作“GC 堆”(Garbage Collected Heap)。

从内存回收的角度来看,由于垃圾收集器大部分都是基于分代收集理论设计的,所以堆也会被划分为新生代老年代Eden空间From Survivor空间To Survivor空间等。

在这里插入图片描述

但随着JIT 编译器的发展和逃逸技术的逐渐成熟,“所有的对象都会分配到堆上”就不再那么绝对了。

从 JDK 7 开始,JVM 已经默认开启逃逸分析了,意味着如果某些方法中的对象引用没有被返回或者未被方法体外使用(也就是未逃逸出去),那么对象可以直接在栈上分配内存。

堆和栈的区别是什么?

堆属于线程共享的内存区域,几乎所有的对象都在堆上分配,生命周期不由单个方法调用所决定,可以在方法调用结束后继续存在,直到不再被任何变量引用,然后被垃圾收集器回收。

栈属于线程私有的内存区域,主要存储局部变量、方法参数、对象引用等,通常随着方法调用的结束而自动释放,不需要垃圾收集器处理。

介绍一下方法区?

方法区并不真实存在,属于 Java 虚拟机规范中的一个逻辑概念,用于存储已被 JVM 加载的类信息、常量、静态变量、即时编译器编译后的代码缓存等。

在 HotSpot 虚拟机中,方法区的实现称为永久代(PermGen),但在 Java 8 及之后的版本中,已经被元空间(Metaspace)所替代。

变量存在堆栈的什么位置?

对于局部变量来说,它存储在当前方法的栈帧中的局部变量表中。当方法执行完毕,栈帧被回收,局部变量也会被释放。

public void method() {
    int localVar = 100;  // 局部变量,存储在栈帧中的局部变量表里
}

对于静态变量来说,它存储在 Java 规范中的方法区中,也就是元空间(Metaspace)。

public class StaticVarDemo {
    public static int staticVar = 100;  // 静态变量,存储在方法区中
}

2. 说一下 JDK1.6、1.7、1.8 内存区域的变化?

JDK1.6、1.7/1.8 内存区域发生了变化,主要体现在方法区的实现:

  • JDK1.6 使用永久代实现方法区:

在这里插入图片描述

  • JDK1.7 时发生了一些变化,将字符串常量池、静态变量,存放在堆上

在这里插入图片描述

  • 在 JDK1.8 时彻底干掉了永久代,而在直接内存中划出一块区域作为元空间,运行时常量池、类常量池都移动到元空间。

在这里插入图片描述

3. 为什么使用元空间替代永久代作为方法区的实现?

Java 虚拟机规范规定的方法区只是换种方式实现。有客观和主观两个原因。

  • 客观上使用永久代来实现方法区的决定的设计导致了 Java 应用更容易遇到内存溢出的问题(永久代有-XX:MaxPermSize 的上限,即使不设置也有默认大小,而 J9 和 JRockit 只要没有触碰到进程可用内存的上限,例如 32 位系统中的 4GB 限制,就不会出问题),而且有极少数方法 (例如 String::intern())会因永久代的原因而导致不同虚拟机下有不同的表现。

  • 主观上当 Oracle 收购 BEA 获得了 JRockit 的所有权后,准备把 JRockit 中的优秀功能,譬如 Java Mission Control 管理工具,移植到 HotSpot 虚拟机时,但因为两者对方法区实现的差异而面临诸多困难。考虑到 HotSpot 未来的发展,在 JDK 6 的 时候 HotSpot 开发团队就有放弃永久代,逐步改为采用本地内存(Native Memory)来实现方法区的计划了,到了 JDK 7 的 HotSpot,已经把原本放在永久代的字符串常量池、静态变量等移出,而到了 JDK 8,终于完全废弃了永久代的概念,改用与 JRockit、J9 一样在本地内存中实现的元空间(Meta-space)来代替,把 JDK 7 中永久代还剩余的内容(主要是类型信息)全部移到元空间中。

4. 对象创建的过程了解吗?

当我们使用 new 关键字创建一个对象的时候,JVM 首先会检查 new 指令的参数是否能在常量池中定位到一个类的符号引用,然后检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,就先执行相应的类加载过程。

如果已经加载,JVM 会为新生对象分配内存,内存分配完成之后,JVM 将分配到的内存空间初始化为零值(成员变量,数值类型是 0,布尔类型是 false,对象类型是 null),接下来设置对象头,对象头里包含了对象是哪个类的实例、对象的哈希码、对象的 GC 分代年龄等信息。

最后,JVM 会执行构造方法(<init>),将成员变量赋值为预期的值,这样一个对象就创建完成了。

在这里插入图片描述

对象的销毁过程了解吗?

对象创建完成后,就可以通过引用来访问对象的方法和属性,当对象不再被任何引用指向时,对象就会变成垃圾。

垃圾收集器会通过可达性分析算法判断对象是否存活,如果对象不可达,就会被回收。

垃圾收集器会通过标记清除、标记复制、标记整理等算法来回收内存,将对象占用的内存空间释放出来。

常用的垃圾收集器有 CMS、G1、ZGC 等,它们的回收策略和效率不同,可以根据具体的场景选择合适的垃圾收集器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2385265.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

进程间通信I·匿名管道

目录 进程间通信&#xff08;IPC&#xff09; 含义 目的 分类 匿名管道 原理 创建过程 特性 四大情况 close问题 代码练习 简单通信 进程池 小知识 进程间通信&#xff08;IPC&#xff09; 含义 就是让不同的进程能看到同一份资源&#xff0c;实现数据交流。 …

Ubuntu Linux系统的基本命令详情

1.Ubuntu Linux是以桌面应用为主的Linux发行版操作系统 2.Ubuntu的用户使用 在登录系统一般使用在安装系统时建立的普通用户登录&#xff0c;如果要使用超级用户权限 #sudo ---执行命令 sudo passwd ---修改用户密码 su - root ---切换超级用户 系统的不同&#xff0c;命令也不…

大数据治理:理论、实践与未来展望(二)

书接上文 文章目录 七、大数据治理的未来发展趋势&#xff08;一&#xff09;智能化与自动化&#xff08;二&#xff09;数据隐私与安全的强化&#xff08;三&#xff09;数据治理的云化&#xff08;四&#xff09;数据治理的跨行业合作&#xff08;五&#xff09;数据治理的生…

PCB布局设计

PCB布局设计 一、原理图到PCB转换前的准备工作 在将原理图转换为PCB之前&#xff0c;我们需要进行一系列准备工作&#xff0c;确保设计的正确性和完整性。这一步骤至关重要&#xff0c;可以避免后续PCB设计中出现不必要的错误。 // 原理图转PCB前必要检查步骤 // 1. 仔细检查…

esp32+IDF V5.1.1版本编译freertos报错

error: portTICK_RATE_MS undeclared (first use in this function); did you mean portTICK_PERIOD_MS 解决方法: 使用命令 idf.py menuconfig 打开配置界面配置freeRtos 使能configENABLE_BACKWARD_COMPATIBLITY

笔记本6GB本地可跑的图生视频项目(FramePack)

文章目录 &#xff08;一&#xff09;简介&#xff08;二&#xff09;本地执行&#xff08;2.1&#xff09;下载&#xff08;2.2&#xff09;更新&#xff08;2.3&#xff09;运行&#xff08;2.4&#xff09;生成 &#xff08;三&#xff09;注意&#xff08;3.1&#xff09;效…

SpringMVC实战:动态时钟

引言 在现代 Web 开发中&#xff0c;选择一个合适的框架对于项目的成功至关重要。Spring MVC 作为 Spring 框架的核心模块之一&#xff0c;以其清晰的架构、强大的功能和高度的可配置性&#xff0c;成为了 Java Web 开发领域的主流选择。本文将通过一个“动态时钟”的实战项目…

哈希表的实现(上)

前言 在C98中&#xff0c;STL提供了底层为红黑树结构的一系列关联式容器&#xff0c;在查询时效率可达到&#xff0c;即最差情况下需要比较红黑树的高度次&#xff0c;当树中的节点非常多时&#xff0c;查询效率也不理想。最好的查询是&#xff0c;进行很少的比较次数就能够将…

【Java高阶面经:微服务篇】1.微服务架构核心:服务注册与发现之AP vs CP选型全攻略

一、CAP理论在服务注册与发现中的落地实践 1.1 CAP三要素的技术权衡 要素AP模型实现CP模型实现一致性最终一致性(Eureka通过异步复制实现)强一致性(ZooKeeper通过ZAB协议保证)可用性服务节点可独立响应(支持分区存活)分区期间无法保证写操作(需多数节点可用)分区容错性…

实验7 HTTP协议分析与测量

实验7 HTTP协议分析与测量 1、实验目的 了解HTTP协议及其报文结构 了解HTTP操作过程&#xff1a;TCP三次握手、请求和响应交互 掌握基于tcpdump和wireshark软件进行HTTP数据包抓取和分析技术 2、实验环境 硬件要求&#xff1a;阿里云云主机ECS 一台。 软件要求&#xff1…

python:机器学习概述

本文目录&#xff1a; 一、人工智能三大概念二、学习方式三、人工智能发展史**1950-1970****1980-2000****2010-2017****2017-至今** 四、机器学习三要素五、常见术语六、数据集的划分七、常见算法分类八、机器学习的建模流程九、特征工程特征工程包括**五大步**&#xff1a;特…

得力DE-620K针式打印机打印速度不能调节维修一例

基本参数: 产品类型 票据针式打印机(平推式) 打印方式 串行点阵击打式 打印宽度 85列 打印针数 24针 可靠性 4亿次/针 色带性能 1000万字符纠错 复写能力 7份(1份原件+6份拷贝) 缓冲区 128KB 接口类型 …

java基础(继承)

什么是继承 继承好处 提高代码的复用性 继承注意事项 权限修饰符 单继承、Object类 冲突&#xff1a; 方法重写 扩展&#xff1a; 其实我们不想看地址&#xff0c;地址看来没用&#xff0c;我们是用来看对象有没有问题 重写toString: 比如这个如果返回的是地址值&#xff0c;…

基于cornerstone3D的dicom影像浏览器 第二十二章 mpr + vr

系列文章目录 第一章 下载源码 运行cornerstone3D example 第二章 修改示例crosshairs的图像源 第三章 vitevue3cornerstonejs项目创建 第四章 加载本地文件夹中的dicom文件并归档 第五章 dicom文件生成png&#xff0c;显示检查栏&#xff0c;序列栏 第六章 stack viewport 显…

MySQL:游标 cursor 句柄

当我们select * from emp 可以查看所有的数据 这个数据就相当于一个数据表 游标的作用相当于一个索引 一个指针 指向每一个数据 假设说我要取出员工中薪资最高的前五名成员 就要用到limit关键字 但是这样太麻烦了 所以这里用到了游标 游标的声明&#xff1a; declare my…

二、ZooKeeper 集群部署搭建

作者&#xff1a;IvanCodes 日期&#xff1a;2025年5月24日 专栏&#xff1a;Zookeeper教程 我们这次教程将以 hadoop01 (192.168.121.131), hadoop02 (192.168.121.132), hadoop03 (192.168.121.133) 三台Linux服务器为例&#xff0c;搭建一个ZooKeeper 3.8.4集群。 一、下载…

<< C程序设计语言第2版 >> 练习1-14 打印输入中各个字符出现频度的直方图

1. 前言 本篇文章是<< C程序设计语言第2版 >> 的第1章的编程练习1-14, 个人觉得还有点意思, 所以写一篇文章来记录下. 希望可以给初学C的同学一点参考. 尤其是自学的同学, 或者觉得以前学得不好, 需要自己补充学习的同学. 和我的很多其它文章一样, 不建议自己还没实…

黑马点评双拦截器和Threadlocal实现原理

文章目录 双拦截器ThreadLocal实现原理 双拦截器 实现登录状态刷新的原因&#xff1a; ​ 防止用户会话过期&#xff1a;通过动态刷新Token有效期&#xff0c;确保活跃用户不会因固定过期时间而被强制登出 ​ 提升用户体验&#xff1a;用户无需频繁重新登录&#xff0c;只要…

港股IPO市场火爆 没有港卡如何参与港股打新?

据Wind资讯数据统计&#xff0c;今年1月1日至5月20日&#xff0c;港股共有23家企业IPO&#xff0c;较去年同期增加6家&#xff1b;IPO融资规模达600亿港元&#xff0c;较去年同期增长626.54%&#xff0c;IPO融资规模重回全球首位。 港股IPO市场持续火爆&#xff0c;不少朋友没有…

RESTful API 在前后端交互中的作用与实践

一、RESTful API 概述 RESTful&#xff08;Representational State Transfer&#xff09;API 是一种基于 HTTP 协议、面向资源的架构风格&#xff0c;旨在实现前后端的松散耦合和高效通信。它通过定义统一的资源标识、操作方法以及数据传输格式&#xff0c;为前后端提供了一种…