自制操作系统day10叠加处理

news2025/5/24 18:40:53

day10叠加处理

叠加处理(harib07b


现在是鼠标的叠加处理,以后还有窗口的叠加处理

涉及图层

最上面小图层是鼠标指针,最下面的一张图层用来存放桌面壁纸。移动图层的方法实现鼠标指针的移动以及窗口的移动。

struct SHEET {
unsigned char *buf;
int bxsize, bysize, vx0, vy0, col_inv, height, flags;
}
  • sheet:透明图层
  • buf是用来记录图层上所描画内容的地址(buffer的略语)
  • 图层的整体大小,用bxsize*bysize表示。vx0和vy0是表示图层在画面上位置的坐标,
  • v是VRAM的略语。
  • col_inv表示透明色色号它是color(颜色)和invisible(透明)的组合略语。height表示图层高度。
  • Flags用于存放有关图层的各种设定信息。

一个图层不能实现叠加处理,多个图层

#define MAX_SHEETS 256
struct SHTCTL {
unsigned char *vram;
int xsize, ysize, top;
struct SHEET *sheets[MAX_SHEETS];
struct SHEET sheets0[MAX_SHEETS];
};

MAX_SHEETS是能够管理的最大图层数,

SHTCTL结构体,其名称来源于sheet control的略语,

变量vram、xsize、ysize代表VRAM的地址和画面的大小

top代表最上面图层的高度。

sheets是记忆地址变量的领域

在这里插入图片描述


struct SHTCTL *shtctl_init(struct MEMMAN *memman, unsigned char *vram, int xsize, int ysize)
{
struct SHTCTL *ctl;
int i;
ctl = (struct SHTCTL *) memman_alloc_4k(memman, sizeof (struct SHTCTL));
if (ctl == 0) {
goto err;
}
ctl->vram = vram;
ctl->xsize = xsize;
ctl->ysize = ysize;
ctl->top = -1; /*一个SHEET没都有 */
for (i = 0; i < MAX_SHEETS; i++) {
ctl->sheets0[i].flags = 0; /* 标记为未使用 */
}
err:
return ctl;
}
  • memman_alloc_4k来分配用于记忆图层控制变量的内存空间,
  • sizeof(struct SHTCTL)C编译器自动计算该变量所占空间的大小
  • 我们给控制变量赋值,给其下的所有图层变量都加上“未使用”标签。

这里ctl->sheets0[i].flags = 0; 只是一个标志变量,简单的数组索引管理


再做一个函数,用于取得新生成的未使用图层。

#define SHEET_USE 1
struct SHEET *sheet_alloc(struct SHTCTL *ctl)
{
struct SHEET *sht;
int i;
for (i = 0; i < MAX_SHEETS; i++) {
if (ctl->sheets0[i].flags == 0) {
sht = &ctl->sheets0[i];
sht->flags = SHEET_USE; /* 标记为正在使用*/
sht->height = -1; /* 隐藏 */
return sht;
}
}
return 0; /* 所有的SHEET都处于正在使用状态*/
}

sheets0[ ]中寻找未使用的图层,如果找到了,就将其标记为“正在使用”,并返回其地址就可以了

高度设为-1,表示图层的高度还没有设置,因而不是显示对象。


void sheet_setbuf(struct SHEET *sht, unsigned char *buf, int xsize, int ysize, int col_inv)
{
sht->buf = buf;
sht->bxsize = xsize;
sht->bysize = ysize;
sht->col_inv = col_inv;
return;
}

设定图层的缓冲区大小和透明色的函数


设定底板高度的函数

void sheet_updown(struct SHTCTL *ctl, struct SHEET *sht, int height)
{
int h, old = sht->height; /* 存储设置前的高度信息 */
/* 如果指定的高度过高或过低,则进行修正 */
if (height > ctl->top + 1) {
height = ctl->top + 1;
}
if (height < -1) {
height = -1;
}
sht->height = height; /* 设定高度 */
/* 下面主要是进行sheets[ ]的重新排列 */
if (old > height) { /* 比以前低 */
if (height >= 0) {
/* 把中间的往上提 */
for (h = old; h > height; h--) {
ctl->sheets[h] = ctl->sheets[h - 1];
ctl->sheets[h]->height = h;
}
ctl->sheets[height] = sht;
} else { /* 隐藏 */
if (ctl->top > old) {
/* 把上面的降下来 */
for (h = old; h < ctl->top; h++) {
ctl->sheets[h] = ctl->sheets[h + 1];
ctl->sheets[h]->height = h;
}
}
ctl->top--; /* 由于显示中的图层减少了一个,所以最上面的图层高度下降 */
}
sheet_refresh(ctl); /* 按新图层的信息重新绘制画面 */
} else if (old < height) { /* 比以前高 */
if (old >= 0) {
/* 把中间的拉下去 */
for (h = old; h < height; h++) {
ctl->sheets[h] = ctl->sheets[h + 1];
ctl->sheets[h]->height = h;
}
ctl->sheets[height] = sht;
} else { /* 由隐藏状态转为显示状态 */
/* 将已在上面的提上来 */
for (h = ctl->top; h >= height; h--) {
ctl->sheets[h + 1] = ctl->sheets[h];
ctl->sheets[h + 1]->height = h + 1;
}
ctl->sheets[height] = sht;
ctl->top++; /* 由于已显示的图层增加了1个,所以最上面的图层高度增加 */
}
sheet_refresh(ctl); /* 按新图层信息重新绘制画面 */
}
return;
}

sheet_refresh函数

这个函数会从下到上描绘所有的图层。refresh是“刷新”的意思。电视屏幕就是在1秒内完成多帧的描绘才做出动画效果的,这个动作就被称为刷新。

void sheet_refresh(struct SHTCTL *ctl)
{
int h, bx, by, vx, vy;
unsigned char *buf, c, *vram = ctl->vram;
struct SHEET *sht;
for (h = 0; h <= ctl->top; h++) {
sht = ctl->sheets[h];
buf = sht->buf;
for (by = 0; by < sht->bysize; by++) {
vy = sht->-vy0 + by;
for (bx = 0; bx < sht->bxsize; bx++) {
vx = sht->vx0 + bx;
c = buf[by * sht->bxsize + bx];
if (c != sht->col_inv) {
vram[vy * ctl->xsize + vx] = c;
}
}
}
}
return;
}

对于已设定了高度的所有图层而言,要从下往上,将透明以外的所有像素都复制到VRAM中。由于是从下开始复制,所以最后最上面的内容就留在了画面上。


不改变图层高度而只上下左右移动图层的函数——sheet_slide。

void sheet_slide(struct SHTCTL *ctl, struct SHEET *sht, int vx0, int vy0)
{
sht->vx0 = vx0;
sht->vy0 = vy0;
if (sht->height >= 0) { /* 如果正在显示*/
sheet_refresh(ctl); /* 按新图层的信息刷新画面 */
}
return;
}

释放已使用图层的内存的函数sheet_free。

void sheet_free(struct SHTCTL *ctl, struct SHEET *sht)
{
if (sht->height >= 0) {
sheet_updown(ctl, sht, -1); /* 如果处于显示状态,则先设定为隐藏 */
}
sht->flags = 0; /* "未使用"标志 */
return;
}

HariMain函数

void HariMain(void)
{
(中略)
struct SHTCTL *shtctl;
struct SHEET *sht_back, *sht_mouse;
unsigned char *buf_back, buf_mouse[256];
(中略)
init_palette();
shtctl = shtctl_init(memman, binfo->vram, binfo->scrnx, binfo->scrny);
sht_back = sheet_alloc(shtctl);
sht_mouse = sheet_alloc(shtctl);
buf_back = (unsigned char *) memman_alloc_4k(memman, binfo->scrnx * binfo->scrny);
sheet_setbuf(sht_back, buf_back, binfo->scrnx, binfo->scrny, -1); /* 没有透明色 */
sheet_setbuf(sht_mouse, buf_mouse, 16, 16, 99); /* 透明色号99 */
init_screen8(buf_back, binfo->scrnx, binfo->scrny);
init_mouse_cursor8(buf_mouse, 99); /* 背景色号99 */
sheet_slide(shtctl, sht_back, 0, 0);
mx = (binfo->scrnx - 16) / 2; /* 按显示在画面中央来计算坐标 */
my = (binfo->scrny - 28 - 16) / 2;
sheet_slide(shtctl, sht_mouse, mx, my);
sheet_updown(shtctl, sht_back, 0);
sheet_updown(shtctl, sht_mouse, 1);
sprintf(s, "(%3d, %3d)", mx, my);
putfonts8_asc(buf_back, binfo->scrnx, 0, 0, COL8_FFFFFF, s);
sprintf(s, "memory %dMB free : %dKB",
memtotal / (1024 * 1024), memman_total(memman) / 1024);
putfonts8_asc(buf_back, binfo->scrnx, 0, 32, COL8_FFFFFF, s);
sheet_refresh(shtctl);
for (;;) {
io_cli();
if (fifo8_status(&keyfifo) + fifo8_status(&mousefifo) == 0) {
io_stihlt();
} else {
if (fifo8_status(&keyfifo) != 0) {
i = fifo8_get(&keyfifo);
io_sti();
sprintf(s, "%02X", i);
boxfill8(buf_back, binfo->scrnx, COL8_008484, 0, 16, 15, 31);
putfonts8_asc(buf_back, binfo->scrnx, 0, 16, COL8_FFFFFF, s);
sheet_refresh(shtctl);
} else if (fifo8_status(&mousefifo) != 0) {
i = fifo8_get(&mousefifo);
io_sti();
if (mouse_decode(&mdec, i) != 0) {
/* 因为已得到3字节的数据所以显示 */
sprintf(s, "[lcr %4d %4d]", mdec.x, mdec.y);
if ((mdec.btn & 0x01) != 0) {
s[1] = 'L';
}
if ((mdec.btn & 0x02) != 0) {
s[3] = 'R';
}
if ((mdec.btn & 0x04) != 0) {
s[2] = 'C';
}
boxfill8(buf_back, binfo-
>scrnx, COL8_008484, 32, 16, 32 + 15 * 8 - 1, 31);
putfonts8_asc(buf_back, binfo->scrnx, 32, 16, COL8_FFFFFF, s);
/* 移动光标 */
mx += mdec.x;
my += mdec.y;
if (mx < 0) {
mx = 0;
}
if (my < 0) {
my = 0;
}
if (mx > binfo->scrnx - 16) {
mx = binfo->scrnx - 16;
}
if (my > binfo->scrny - 16) {
my = binfo->scrny - 16;
}
sprintf(s, "(%3d, %3d)", mx, my);
boxfill8(buf_back, binfo->scrnx, COL8_008484, 0, 0, 79, 15); /* 消坐标 */
putfonts8_asc(buf_back, binfo->scrnx, 0, 0, COL8_FFFFFF, s); /* 写坐标 */
sheet_slide(shtctl, sht_mouse, mx, my); /* 包含sheet_refresh含
sheet_refresh */
}
}
}
}
}

2个图层,分别是sht_back和sht_mouse,还准备了2个缓冲区buf_back和、buf_mouse,用于在其中描绘图形。

提高叠加处理速度(1)(harib07c


提高图层移动:之前鼠标移动是将所有的图层刷新,其实只需要刷新两个鼠标指针的像素

不对,这里好像是刷新所有图层的相关像素。想法:鼠标是顶层的,能不能只刷新这个顶层的像素加载到显存

void sheet_refreshsub(struct SHTCTL *ctl, int vx0, int vy0, int vx1, int vy1)
{
int h, bx, by, vx, vy;
unsigned char *buf, c, *vram = ctl->vram;
struct SHEET *sht;
for (h = 0; h <= ctl->top; h++) {
sht = ctl->sheets[h];
buf = sht->buf;
for (by = 0; by < sht->bysize; by++) {
vy = sht->vy0 + by;
for (bx = 0; bx < sht->bxsize; bx++) {
vx = sht->vx0 + bx;
if (vx0 <= vx && vx < vx1 && vy0 <= vy && vy < vy1) {
c = buf[by * sht->bxsize + bx];
if (c != sht->col_inv) {
vram[vy * ctl->xsize + vx] = c;
}
}
}
}
}
return;
}

这个函数几乎和sheet_refresh一样,唯一的不同点在于它能使用vx0~ vy1指定刷新的范围,而我们只追加了一个if语句就实现了这个新功能


使用这个refreshsub函数来提高sheet_slide的运行速度。

void sheet_slide(struct SHTCTL *ctl, struct SHEET *sht, int vx0, int vy0)
{
int old_vx0 = sht->vx0, old_vy0 = sht->vy0;
sht->vx0 = vx0;
sht->vy0 = vy0;
if (sht->height >= 0) { /* 如果正在显示,则按新图层的信息刷新画面 */
sheet_refreshsub(ctl, old_vx0, old_vy0, old_vx0 + sht->bxsize, old_vy0 + sht-
>bysize);
sheet_refreshsub(ctl, vx0, vy0, vx0 + sht->bxsize, vy0 + sht->bysize);
}
return;
}

相应的,图层显示文字也可以只刷新对应像素

void sheet_refresh(struct SHTCTL *ctl, struct SHEET *sht, int bx0, int by0, int bx1, int by1)
{
if (sht->height >= 0) { /* 如果正在显示,则按新图层的信息刷新画面*/
sheet_refreshsub(ctl, sht->vx0 + bx0, sht->vy0 + by0, sht->vx0 + bx1, sht-
>vy0 + by1);
}
return;
}

所谓指定范围,并不是直接指定画面内的坐标,而是以缓冲区内的坐标来表示。这样一来,HariMain就可以不考虑图层在画面中的位置了。


改动了refresh,所以也要相应改造updown。做了改动的只有sheet_refresh(ctl)这部分(有两处),修改后的程序如下:

sheet_refreshsub(ctl, sht->vx0, sht->vy0, sht->vx0 + sht->bxsize, sht->vy0 + sht->bysize);


改写HariMain

void HariMain(void)
{
(中略)
sprintf(s, "(%3d, %3d)", mx, my);
putfonts8_asc(buf_back, binfo->scrnx, 0, 0, COL8_FFFFFF, s);
sprintf(s, "memory %dMB free : %dKB",
memtotal / (1024 * 1024), memman_total(memman) / 1024);
putfonts8_asc(buf_back, binfo->scrnx, 0, 32, COL8_FFFFFF, s);
sheet_refresh(shtctl, sht_back, 0, 0, binfo->scrnx, 48); /* 这里! */
for (;;) {
io_cli();
if (fifo8_status(&keyfifo) + fifo8_status(&mousefifo) == 0) {
io_stihlt();
} else {
if (fifo8_status(&keyfifo) != 0) {
(中略)
sheet_refresh(shtctl, sht_back, 0, 16, 16, 32); /* 这里! */
} else if (fifo8_status(&mousefifo) != 0) {
i = fifo8_get(&mousefifo);
io_sti();
if (mouse_decode(&mdec, i) != 0) {
(中略)
boxfill8(buf_back, binfo-
>scrnx, COL8_008484, 32, 16, 32 + 15 * 8 - 1, 31);
putfonts8_asc(buf_back, binfo->scrnx, 32, 16, COL8_FFFFFF, s);
sheet_refresh(shtctl, sht_back, 32, 16, 32 + 15 * 8, 32); /* 这里! */
(中略)
sprintf(s, "(%3d, %3d)", mx, my);
boxfill8(buf_back, binfo->scrnx, COL8_008484, 0, 0, 79, 15); /* 消去坐
标 */
putfonts8_asc(buf_back, binfo->scrnx, 0, 0, COL8_FFFFFF, s); /* 写出坐
标 */
sheet_refresh(shtctl, sht_back, 0, 0, 80, 16); /* 这里! */
sheet_slide(shtctl, sht_mouse, mx, my);
}
}
}
}
}

提高叠加处理速度(2)(harib07d

之前代码缺陷:即便只刷新图层的一部分,也要对所有图层的全部像素执行if语句,判断“是写入呢,还是不写呢”。

因此:最初就应该把for语句的范围限定在刷新范围之内。

原来:

void sheet_refreshsub(struct SHTCTL *ctl, int vx0, int vy0, int vx1, int vy1)
{
int h, bx, by, vx, vy;
unsigned char *buf, c, *vram = ctl->vram;
struct SHEET *sht;
for (h = 0; h <= ctl->top; h++) {
sht = ctl->sheets[h];
buf = sht->buf;
for (by = 0; by < sht->bysize; by++) {
vy = sht->vy0 + by;
for (bx = 0; bx < sht->bxsize; bx++) {
vx = sht->vx0 + bx;
if (vx0 <= vx && vx < vx1 && vy0 <= vy && vy < vy1) {
c = buf[by * sht->bxsize + bx];
if (c != sht->col_inv) {
vram[vy * ctl->xsize + vx] = c;
}
}
}
}
}
return;
}

改进:

void sheet_refreshsub(struct SHTCTL *ctl, int vx0, int vy0, int vx1, int vy1)
{
int h, bx, by, vx, vy, bx0, by0, bx1, by1;
unsigned char *buf, c, *vram = ctl->vram;
struct SHEET *sht;
for (h = 0; h <= ctl->top; h++) {
sht = ctl->sheets[h];
buf = sht->buf;
/* 使用vx0~vy1,对bx0~by1进行倒推/
bx0 = vx0 - sht->vx0;
by0 = vy0 - sht->vy0;
bx1 = vx1 - sht->vx0;
by1 = vy1 - sht->vy0;
if (bx0 < 0) { bx0 = 0; } /* 说明(1) */
if (by0 < 0) { by0 = 0; }
if (bx1 > sht->bxsize) { bx1 = sht->bxsize; } /* 说明(2) */
if (by1 > sht->bysize) { by1 = sht->bysize; }
for (by = by0; by < by1; by++) {
vy = sht->vy0 + by;
for (bx = bx0; bx < bx1; bx++) {
vx = sht->vx0 + bx;
c = buf[by * sht->bxsize + bx];
if (c != sht->col_inv) {
vram[vy * ctl->xsize + vx] = c;
}
}
}
}
return;
}

改良的关键在于,bx在for语句中并不是在0到bxsize之间循环,而是在bx0到bx1之间循环(对于by也一样)。而bx0和bx1都是从刷新范围“倒推”求得的。倒推其实就是把公式变形转换了一下,具体如下:

vx = sht->vx0 + bx; → bx = vx - sht->vx0;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2384798.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

鸿蒙Flutter实战:23-混合开发详解-3-源码模式引入

引言 在前面的文章混合开发详解-2-Har包模式引入中&#xff0c;我们介绍了如何将 Flutter 模块打包成 Har 包&#xff0c;并引入到原生鸿蒙工程中。本文中&#xff0c;我们将介绍如何通过源码依赖的方式&#xff0c;将 Flutter 模块引入到原生鸿蒙工程中。 创建工作 创建一个…

leetcode:2469. 温度转换(python3解法,数学相关算法题)

难度&#xff1a;简单 给你一个四舍五入到两位小数的非负浮点数 celsius 来表示温度&#xff0c;以 摄氏度&#xff08;Celsius&#xff09;为单位。 你需要将摄氏度转换为 开氏度&#xff08;Kelvin&#xff09;和 华氏度&#xff08;Fahrenheit&#xff09;&#xff0c;并以数…

【软件安装】Windows操作系统中安装mongodb数据库和mongo-shell工具

这篇文章&#xff0c;主要介绍Windows操作系统中如何安装mongodb数据库和mongo-shell工具。 目录 一、安装mongodb数据库 1.1、下载mongodb安装包 1.2、添加配置文件 1.3、编写启动脚本&#xff08;可选&#xff09; 1.4、启动服务 二、安装mongo-shell工具 2.1、下载mo…

记共享元素动画导致的内存泄露

最近在给项目的预览图片页增加共享元素动画的时候&#xff0c;发现了LeakCanary一直报内存泄露。 LeakCanary日志信息 ┬─── │ GC Root: Thread object │ ├─ java.lang.Thread instance │ Leaking: NO (the main thread always runs) │ Thread name: main │ …

Flyweight(享元)设计模式 软考 享元 和 代理属于结构型设计模式

1.目的&#xff1a;运用共享技术有效地支持大量细粒度的对象 Flyweight&#xff08;享元&#xff09;设计模式 是一种结构型设计模式&#xff0c;它的核心目的是通过共享对象来减少内存消耗&#xff0c;特别是在需要大量相似对象的场景中。Flyweight 模式通过将对象的共享细节与…

服务器网络配置 netplan一个网口配置两个ip(双ip、辅助ip、别名IP别名)

文章目录 问答 问 # This is the network config written by subiquity network:ethernets:enp125s0f0:dhcp4: noaddresses: [192.168.90.180/24]gateway4: 192.168.90.1nameservers:addresses:- 172.0.0.207- 172.0.0.208enp125s0f1:dhcp4: trueenp125s0f2:dhcp4: trueenp125…

响应面法(Response Surface Methodology ,RSM)

响应面法是一种结合统计学和数学建模的实验优化技术&#xff0c;通过有限的实验数据&#xff0c;建立输入变量与输出响应之间的数学模型&#xff0c;找到最优操作条件。 1.RSM定义 RSM通过设计实验、拟合数学模型&#xff08;如多项式方程&#xff09;和分析响应曲面&#xff…

Spring Boot 拦截器:解锁5大实用场景

一、Spring Boot中拦截器是什么 在Spring Boot中&#xff0c;拦截器&#xff08;Interceptor&#xff09;是一种基于AOP&#xff08;面向切面编程&#xff09;思想的组件&#xff0c;用于在请求处理前后插入自定义逻辑&#xff0c;实现权限校验、日志记录、性能监控等非业务功能…

有两个Python脚本都在虚拟环境下运行,怎么打包成一个系统服务,按照顺序启动?

环境&#xff1a; SEMCP searx.webapp python 问题描述&#xff1a; 有两个python脚本都在虚拟环境下运行&#xff0c;怎么打包成一个系统服务&#xff0c;按照顺序启动&#xff1f; 解决方案&#xff1a; 将这两个 Python 脚本打包成有启动顺序的系统服务&#xff0c;最…

Python 脚本执行命令的深度探索:方法、示例与最佳实践

在现代软件开发过程中&#xff0c;Python 脚本常常需要与其他工具和命令进行交互&#xff0c;以实现自动化任务、跨工具数据处理等功能。Python 提供了多种方式来执行外部命令&#xff0c;并获取其输出&#xff0c;重定向到文件&#xff0c;而不是直接在终端中显示。这种能力使…

PotPlayer 4K 本地万能影音播放器

今日分享一款来自吾爱论坛大佬分享的啥都能播的的本地播放器&#xff0c;不管是不管是普通视频、4K超清、蓝光3D&#xff0c;还是冷门格式&#xff0c;它基本都能搞定。而且运行流畅不卡顿&#xff0c;电脑配置低也能靠硬件加速&#xff0c;让你根本停不下来。 自带解码器&…

2025年电工杯A题第一版本Q1-Q4详细思路求解+代码运行

A题 光伏电站发电功率日前预测问题 问题背景 光伏发电是通过半导体材料的光电效应&#xff0c;将太阳能直接转化为电能的技术。光伏电站是由众多光伏发电单元组成的规模化发电设施。 光伏电站的发电功率主要由光伏板表面接收到的太阳辐射总量决定&#xff0c;不同季节太阳光…

基于阿里云DashScope API构建智能对话指南

背景 公司想对接AI智能体&#xff0c;用于客服系统&#xff0c;经过调研和实施&#xff0c;觉得DashScope 符合需求。 阿里云推出的DashScope灵积模型服务为开发者提供了便捷高效的大模型接入方案。本文将详细介绍如何基于DashScope API构建一个功能完善的智能对话系统&#x…

九州未来十三载:开源赋能 智启未来

2012年&#xff0c;九州未来以“开源赋能云边变革”为使命&#xff0c;开启中国开放云边基础架构服务的探索之路。十三载坚守深耕&#xff0c;我们始终以开源为翼&#xff0c;以算力为基&#xff0c;在科技浪潮中砥砺前行&#xff0c;见证并推动着AI时代的算力变革。 坚守初心丨…

2025年AI搜索引擎发展洞察:技术革新与市场变革

引言&#xff1a;AI搜索的崛起与市场格局重塑 2024-2025年&#xff0c;AI搜索市场迎来了前所未有的变革期。随着DeepSeek-R1等先进大语言模型的推出&#xff0c;传统搜索引擎、AI原生搜索平台以及各类内容平台纷纷加速智能化转型&#xff0c;推动搜索技术从基础信息检索向深度…

dify调用Streamable HTTP MCP应用

一、概述 上一篇文章&#xff0c;介绍了使用python开发Streamable HTTP MCP应用&#xff0c;链接&#xff1a;https://www.cnblogs.com/xiao987334176/p/18872195 接下来介绍dify如何调用MCP 二、插件 安装插件 需要安装2个插件&#xff0c;分别是&#xff1a;Agent 策略(支持 …

HCIP实验五

一、实验拓扑图&#xff1a; 二、实验需求分析&#xff1a; 1. PreVal策略&#xff1a;要求确保R4通过R2到达192.168.10.0/24 &#xff0c;需在R4上针对去往该网段路由配置PreVal策略&#xff0c;为经R2的路径赋予更高优先值&#xff0c;影响本地路由表选路。 2. AS Path策略…

vivado fpga程序固化

一般下载到fpga上的程序在掉电之后就会丢失&#xff0c;如果想要掉电之后程序不丢失&#xff0c;就需要将比特流文件固化到板载的flash上。 以下以我的7a100t开发板为例&#xff0c;介绍程序固化的流程 点击OK就可以下载了。 一个奇怪的问题 有一次我的一个工程固化之后&…

OpenCV CUDA模块图像特征检测与描述------图像中快速检测特征点类cv::cuda::FastFeatureDetector

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::cuda::FastFeatureDetector 是 OpenCV 的 CUDA 加速模块中的一部分&#xff0c;用于在图像中快速检测特征点。FAST&#xff08;Features fro…

SpringMVC(结合源码浅析工作流程)

SpringMVC 概念 Spring MVC 是基于前端控制器&#xff08;Front Controller&#xff09;设计模式的 Web 框架&#xff0c;在 Web 应用中指一个统一的入口&#xff0c;用来接收所有客户端请求&#xff0c;并统一进行分发、处理。在 SpringMVC 中&#xff0c;前端控制器就是 Di…