python学习打卡day34

news2025/5/24 16:58:25

DAY 34 GPU训练及类的call方法

知识点回归:

  1. CPU性能的查看:看架构代际、核心数、线程数
  2. GPU性能的查看:看显存、看级别、看架构代际
  3. GPU训练的方法:数据和模型移动到GPU device上
  4. 类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)

作业

复习今天的内容,在巩固下代码。思考下为什么会出现这个问题。

CPU性能解读:

import wmi

c = wmi.WMI()
processors = c.Win32_Processor()

for processor in processors:
    print(f"CPU 型号: {processor.Name}")
    print(f"核心数: {processor.NumberOfCores}")
    print(f"线程数: {processor.NumberOfLogicalProcessors}")

利用上述代码可以查看基本的CPU信息

GPU性能解读:

#使用这段代码来检查CUDA是否可以用
import torch

# 检查CUDA是否可用
if torch.cuda.is_available():
    print("CUDA可用!")
    # 获取可用的CUDA设备数量
    device_count = torch.cuda.device_count()
    print(f"可用的CUDA设备数量: {device_count}")
    # 获取当前使用的CUDA设备索引
    current_device = torch.cuda.current_device()
    print(f"当前使用的CUDA设备索引: {current_device}")
    # 获取当前CUDA设备的名称
    device_name = torch.cuda.get_device_name(current_device)
    print(f"当前CUDA设备的名称: {device_name}")
    # 获取CUDA版本
    cuda_version = torch.version.cuda
    print(f"CUDA版本: {cuda_version}")
    # 查看cuDNN版本(如果可用)
    print("cuDNN版本:", torch.backends.cudnn.version())

else:
    print("CUDA不可用。")

昨天提到了CPU的训练方式,今天接触GPU训练:

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 归一化数据
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 将数据转换为PyTorch张量并移至GPU
# 分类问题交叉熵损失要求标签为long类型
# 张量具有to(device)方法,可以将张量移动到指定的设备上
X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(4, 10)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3)

    def forward(self, x):
        out = self.fc1(x)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 20000
losses = []
start_time = time.time()

for epoch in range(num_epochs):
    # 前向传播
    outputs = model(X_train)
    loss = criterion(outputs, y_train)

    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # 记录损失值
    losses.append(loss.item())

    # 打印训练信息
    if (epoch + 1) % 100 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

time_all = time.time() - start_time
print(f'Training time: {time_all:.2f} seconds')

# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()
        out = self.relu(out)
        out = self.fc2(out)
        return out

# 实例化模型并移至GPU
# MLP继承nn.Module类,所以也具有to(device)方法
model = MLP().to(device)

这里MLP是nn.Module类中的方法,所以直接用to(device)方法就可以将模型转移到GPU。 
这是训练20000轮的损失变化 

 但是奇怪的是,昨天用CPU跑整个过程只用了3秒,为什么有CUDA加速的GPU却要跑22秒呢?

本质是因为GPU在计算的时候,相较于cpu多了3个时间上的开销

1. 数据传输开销 (CPU 内存 <-> GPU 显存)

2. 核心启动开销 (GPU 核心启动时间)

3. 性能浪费:计算量和数据批次

数据传输开销 (CPU 内存 <-> GPU 显存)

        在 GPU 进行任何计算之前,数据(输入张量 X_train、y_train,模型参数)需要从计算机的主内存 (RAM) 复制到 GPU 专用的显存 (VRAM) 中。 当结果传回 CPU 时(例如,使用 loss.item() 获取损失值用于打印或记录,或者获取最终预测结果),数据也需要从 GPU 显存复制回 CPU 内存。

        对于少量数据和非常快速的计算任务,这个传输时间可能比 GPU 通过并行计算节省下来的时间还要长。

        在上述代码中,循环里的 loss.item() 操作会在每个 epoch 都进行一次从 GPU 到 CPU 的数据同步和传输,以便获取标量损失值。对于20000个epoch来说,这会累积不少的传输开销。

核心启动开销 (GPU 核心启动时间)

GPU 执行的每个操作(例如,一个线性层的前向传播、一个激活函数)都涉及到在 GPU 上启动一个“核心”(kernel)——一个在 GPU 众多计算单元上运行的小程序。

启动每个核心都有一个小的、固定的开销。

如果核心内的实际计算量非常小(本项目的小型网络和鸢尾花数据),这个启动开销在总时间中的占比就会比较大。相比之下,CPU 执行这些小操作的“调度”开销通常更低。

性能浪费:计算量和数据批次

这个数据量太少,gpu的很多计算单元都没有被用到,即使用了全批次也没有用到的全部计算单元。

那么什么时候 GPU 会发挥巨大优势?

大型数据集: 例如,图像数据集成千上万张图片,每张图片维度很高。

大型模型: 例如,深度卷积网络 (CNNs like ResNet, VGG) 或 Transformer 模型,它们有数百万甚至数十亿的参数,计算量巨大。

合适的批处理大小: 能够充分利用 GPU 并行性的 batch size,不至于还有剩余的计算量没有被 GPU 处理。

复杂的、可并行的运算: 大量的矩阵乘法、卷积等。

针对上面反应的3个问题,能够优化的只有数据传输时间,针对性解决即可,很容易想到2个思路:

1. 直接不打印训练过程的loss了,但是这样会没办法记录最后的可视化图片,只能肉眼观察loss数值变化。

import time
start_time = time.time() # 记录开始时间

for epoch in range(num_epochs): # range是从0开始,所以epoch是从0开始
    # 前向传播
    outputs = model.forward(X_train)   # 显式调用forward函数
    # outputs = model(X_train)  # 常见写法隐式调用forward函数,其实是用了model类的__call__方法
    loss = criterion(outputs, y_train) # output是模型预测值,y_train是真实标签

    # 反向传播和优化
    optimizer.zero_grad() #梯度清零,因为PyTorch会累积梯度,所以每次迭代需要清零,梯度累计是那种小的bitchsize模拟大的bitchsize
    loss.backward() # 反向传播计算梯度
    optimizer.step() # 更新参数

    # 记录损失值
    # losses.append(loss.item())

    # 打印训练信息
    if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

time_all = time.time() - start_time # 计算训练时间
print(f'Training time: {time_all:.2f} seconds')

 这次时间变成了9秒,说明计算损失这一步在数据传输过程中占据了很多时间。

2. 每隔200个epoch保存一下loss,不需要20000个epoch每次都打印,

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as plt

# 设置GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 归一化数据
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 将数据转换为PyTorch张量并移至GPU
X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

# 实例化模型并移至GPU
model = MLP().to(device)

# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 20000  # 训练的轮数

# 用于存储每100个epoch的损失值和对应的epoch数
losses = []

start_time = time.time()  # 记录开始时间

for epoch in range(num_epochs):
    # 前向传播
    outputs = model(X_train)  # 隐式调用forward函数
    loss = criterion(outputs, y_train)

    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # 记录损失值
    if (epoch + 1) % 200 == 0:
        losses.append(loss.item()) # item()方法返回一个Python数值,loss是一个标量张量
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
    
   
time_all = time.time() - start_time  # 计算训练时间
print(f'Training time: {time_all:.2f} seconds')


# 可视化损失曲线
plt.plot(range(len(losses)), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

这样时间也可以变短

Call方法 

# 我们来看下昨天代码中你的定义函数的部分
class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Module
    def __init__(self): # 初始化函数
        super(MLP, self).__init__() # 调用父类的初始化函数
 # 前三行是八股文,后面的是自定义的

        self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层
# 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

可以注意到,self.fc1 = nn.Linear(4, 10)  此时,是实例化了一个nn.Linear(4, 10)对象,并把这个对象赋值给了MLP的初始化函数中的self.fc1变量。

那为什么下面的前向传播中却可以out = self.fc1(x)  呢?,self.fc1是一个实例化的对象,为什么具备了函数一样的用法,这是因为nn.Linear继承了nn.Module类,nn.Module类中定义了__call__方法。(可以ctrl不断进入来查看)

在 Python 中,任何定义了 __call__ 方法的类,其实例都可以像函数一样被调用。

当调用 self.fc1(x) 时,实际上执行的是:

- self.fc1.__call__(x)(Python 的隐式调用)

- 而 nn.Module 的 __call__ 方法会调用子类的 forward 方法(即 self.fc1.forward(x))。这个方法就是个前向计算方法。

relu是torch.relu()这个函数为了保持写法一致,又封装成了nn.ReLU()这个类。来保证接口的一致性

PyTorch 官方强烈建议使用 self.fc1(x),因为它会触发完整的前向传播流程(包括钩子函数)这是 PyTorch 的核心设计模式,几乎所有组件(如 nn.Conv2d、nn.ReLU、甚至整个模型)都可以这样调用。

# 不带参数的call方法
class Counter:
    def __init__(self):
        self.count = 0
    
    def __call__(self):
        self.count += 1
        return self.count

# 使用示例
counter = Counter()
print(counter())  # 输出: 1
print(counter())  # 输出: 2
print(counter.count)  # 输出: 2
# 带参数的call方法
class Adder:
    def __call__(self, a, b):
        print("唱跳篮球rap")
        return a + b

adder = Adder()
print(adder(3, 5))  # 输出: 8

@浙大疏锦行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2384743.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

leetcode-快慢指针系列

开胃小菜 141. 环形链表 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链…

JAVA05基本数据类型和包装类的转换,转换成其他数据类型,包装类与字符串的转换+学生类的定义实例

1.基本数据类型和包装类的转换 下面是一个自动手动的例题 2.将包装类转换成其他类型 3. 将数据类型转换成字符串 将字符串转换成数据类型 以下是一个例题 学生类的例题

Python打卡训练营学习记录Day34

知识点回归&#xff1a; CPU性能的查看&#xff1a;看架构代际、核心数、线程数 GPU性能的查看&#xff1a;看显存、看级别、看架构代际 GPU训练的方法&#xff1a;数据和模型移动到GPU device上 类的call方法&#xff1a;为什么定义前向传播时可以直接写作self.fc1(x) CPU性…

动手学习深度学习V1.1 chapter2 (2.1-2.2)

chapter2&#xff1a;深度学习基础 区分问题&#xff1a;回归问题还是分类问题&#xff1f; 输出结果是不明确的连续值的时候就是回归问题&#xff0c;比如房价预测&#xff0c;销售额预测等。 输出结果是明确几个离散值的时候就是分类问题&#xff0c;比如字符识别&#xf…

数据结构(6)线性表-队列

一、队列的概述 队列也是一种特殊的线性表&#xff0c;只允许在一段插入数据&#xff0c;另一端删除数据。插入操作的一端称为队尾&#xff0c;删除操作的一端称为队头。 如图&#xff1a; 二、队列相关操作 1.队列结构体的声明 类似于栈&#xff0c;他肯定也得借助于数组或…

【数据架构04】数据湖架构篇

✅ 10张高质量数据治理架构图 无论你是数据架构师、治理专家&#xff0c;还是数字化转型负责人&#xff0c;这份资料库都能为你提供体系化参考&#xff0c;高效解决“架构设计难、流程不清、平台搭建慢”的痛点&#xff01; &#x1f31f;限时推荐&#xff0c;速速收藏&#…

uniapp-商城-62-后台 商品列表(分类展示商品的布局)

每一个商品都有类别&#xff0c;比如水果&#xff0c;蔬菜&#xff0c;肉&#xff0c;粮油等等&#xff0c;另外每一个商品都有自己的属性&#xff0c;这些都在前面的章节进行了大量篇幅的介绍。这里我们终于完成了商品类的添加&#xff0c;商品的添加&#xff0c;现在到了该进…

初识C++:模版

本篇博客主要讲解C模版的相关内容。 目录 1.泛型编程 2.函数模板 2.1 函数模版概念 2.2 函数模版格式 2.3 函数模版的原理 2.4 函数模版的实例化 1.隐式实例化&#xff1a;让编译器根据实参推演模板参数的实际类型 2. 显式实例化&#xff1a;在函数名后的<>中指定模…

突破认知边界:神经符号AI的未来与元认知挑战

目录 一、神经符号AI的核心领域与研究方法 &#xff08;一&#xff09;知识表示&#xff1a;构建智能世界的语言 &#xff08;二&#xff09;学习与推理&#xff1a;让机器“思考”与“学习” &#xff08;三&#xff09;可解释性与可信度&#xff1a;让AI更透明 &#xf…

Java 处理地理信息数据[DEM TIF文件数据获取高程]

目录 1、导入依赖包 2、读取方法 3、其他相关地理信息相关内容&#xff1a; 1️⃣常用的坐标系 1、GIS 中的坐标系一般分为两大类&#xff1a; 2. ✅常见的地理坐标系 2.0 CGCS2000&#xff08;EPSG:4490&#xff09; 2.1 WGS84 (World Geodetic System 1984) &#xff08;EPSG…

谈谈对dubbo的广播机制的理解

目录 1、介绍 1.1、广播调用 1、工作原理 1.2、调用方式 1、Reference 注解 2、XML 配置 3、全局配置 1.3、 广播机制的特性 2、重试机制 2.1、默认行为 2.2、自定义逻辑 1、在业务层封装重试逻辑 2、使用 Reference 3、广播调用的实践 3.1、常用参数 1.…

003-类和对象(二)

类和对象&#xff08;二&#xff09; 1. 类的6个默认成员函数 如果一个类中什么成员都没有&#xff0c;简称为空类。 空类中真的什么都没有吗&#xff1f;并不是&#xff0c;任何类在什么都不写时&#xff0c;编译器会自动生成以下6个默认成员函数。 默认成员函数&#xff…

Linux火墙管理及优化

网络环境配置 使用3个新的虚拟机【配置好软件仓库和网络的】 F1 192.168.150.133 NAT F2 192.168.150.134 192.168.10.20 NAT HOST-ONLY 网络适配仅主机 F3 192.168.10.30 HOST-ONLY 网络适配仅主机 1 ~]# hostnamectl hostname double1.timinglee.org 【更…

Visual Studio 制作msi文件环境搭建

一、插件安装 a. 插件寻找 在 Visual Studio 2017 中&#xff0c;如果你希望安装用于创建 MSI 安装包的插件&#xff0c;第一步是&#xff1a;打开 Visual Studio 后&#xff0c;点击顶部菜单栏中的 “工具”&#xff08;Tools&#xff09;&#xff0c;然后选择下拉菜单中的 “…

鸿蒙进阶——Framework之Want 隐式匹配机制概述

文章大纲 引言一、Want概述二、Want的类型1、显式Want2、隐式Want3、隐式Want的匹配 三、隐式启动Want 源码概述1、有且仅有一个Ability匹配2、有多个Ability 匹配需要弹出选择对话框3、ImplicitStartProcessor::ImplicitStartAbility3.1、GenerateAbilityRequestByAction3.1.1…

antv/g6 图谱封装配置(二)

继上次实现图谱后&#xff0c;后续发现如果要继续加入不同样式的图谱实现起来太过麻烦&#xff0c;因此考虑将配置项全部提取封装到js文件中&#xff0c;图谱组件只专注于实现各种不同的组件&#xff0c;其中主要封装的点就是各个节点的横坐标&#xff08;x&#xff09;,纵坐标…

OpenCV CUDA模块图像过滤------用于创建一个最小值盒式滤波器(Minimum Box Filter)函数createBoxMinFilter()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 该函数创建的是一个 最小值滤波器&#xff08;Minimum Filter&#xff09;&#xff0c;它对图像中每个像素邻域内的像素值取最小值。常用于&…

网络抓包命令tcpdump及分析工具wireshark使用

文章目录 环境文档用途详细信息 环境 系统平台&#xff1a;Linux x86-64 Red Hat Enterprise Linux 8,Linux x86-64 Red Hat Enterprise Linux 7,Linux x86-64 SLES 12,银河麒麟 &#xff08;鲲鹏&#xff09;,银河麒麟 &#xff08;X86_64&#xff09;,银河麒麟&#xff08;龙…

车载诊断架构 --- 车载诊断有那些内容(上)

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 钝感力的“钝”,不是木讷、迟钝,而是直面困境的韧劲和耐力,是面对外界噪音的通透淡然。 生活中有两种人,一种人格外在意别人的眼光;另一种人无论…

【Hadoop】大数据技术之 HDFS

目录 一、HDFS 概述 1.1 HDFS 产出背景及定义 1.2 HDFS 优缺点 1.3 HDFS 组成架构 1.4 HDFS 文件块大小 二、HDFS 的Shell 操作 三、HDFS 的读写流程&#xff08;面试重点&#xff09; 3.1 HDFS 写数据流程 3.2 HDFS 读数据流程 四、DataNode 4.1 DataNode 的工作机制…