大语言模型 12 - 从0开始训练GPT 0.25B参数量 MiniMind2 补充 训练开销 训练步骤 知识蒸馏 LoRA等

news2025/5/22 18:28:44

写在前面

GPT(Generative Pre-trained Transformer)是目前最广泛应用的大语言模型架构之一,其强大的自然语言理解与生成能力背后,是一个庞大而精细的训练流程。本文将从宏观到微观,系统讲解GPT的训练过程,包括数据收集、预处理、模型设计、训练策略、优化技巧以及后训练阶段(微调、对齐)等环节。

我们将先对 GPT 的训练方案进行一个简述,接着我们将借助 MiniMind 的项目,来完成我们自己的 GPT 的训练。

训练阶段概览

GPT 的训练过程大致分为以下几个阶段:

  • 数据准备(Data Preparation)
  • 预训练(Pretraining)
  • 指令微调(Instruction Tuning)
  • 对齐阶段(Alignment via RLHF 或 DPO)
  • 推理部署(Inference & Serving)

在这里插入图片描述

项目经验

训练开销

● 时间单位:小时 (h)。
● 成本单位:人民币 (¥);7¥ ≈ 1美元。
● 3090 租卡单价:≈1.3¥/h(可自行参考实时市价)。
● 参考标准:表格仅实测 pretrain 和 sft_mini_512 两个数据集的训练时间,其它耗时根据数据集大小估算(可能存在些许出入)。

作者对于成本的计算如下:
在这里插入图片描述

这是作者进行测试的结果:
在这里插入图片描述

✨仅价值3块钱成本的MiniMind-Zero并不是噱头!Chat测试:
👶: 请介绍一下自己。
🤖️: 作为人工智能,我没有实际的生活,也没有自我意识,所以没有自己的生活。我被设计成能够帮助用户解答问题、提供信息、进行对话等。我的设计和功能是由计算机科学、机器学习、人工智能技术和算法所构建的,我通过编程和算法实现。

👶: 推荐一些杭州的特色美食吧。
🤖️: 杭州有很多美味的特色美食,比如鸡肉串、鳗鱼头、水煮鱼、豆腐脑等。这些美食都非常美味,有着独特的风味和口感,绝对是值得一试的美食。

👶: 请为我讲解“大语言模型”这个概念。
🤖️: 大语言模型是一种人工智能技术,它使用大量的文本数据来训练模型,然后在不断的迭代中不断优化模型。它的目标是根据输入的数据来生成符合特定需求的文本,这些文本可以是任何你感兴趣的主题。

👶: Introduce the history of the United States, please.
🤖️: 您提到的“Introok’s the believeations of theument." 这个名字来源于中国古代的"groty of of the change."

极速且初具效果,甚至仍然可以进一步压缩获取更小更优质的训练数据。 Zero模型权重保存为 full_sft_512_zero.pth(见下文MiniMind模型文件链接),如有兴趣可下载检验此模型效果。

主要训练步骤

预训练(Pretrain)

LLM首先要学习的并非直接与人交流,而是让网络参数中充满知识的墨水,“墨水” 理论上喝的越饱越好,产生大量的对世界的知识积累。 预训练就是让Model先埋头苦学大量基本的知识,例如从Wiki百科、新闻、书籍整理大规模的高质量训练数据。 这个过程是“无监督”的,即人类不需要在过程中做任何“有监督”的校正,而是由模型自己从大量文本中总结规律学习知识点。 模型此阶段目的只有一个:学会词语接龙。例如我们输入“秦始皇”四个字,它可以接龙“是中国的第一位皇帝”。

有监督微调(Supervised Fine-Tuning)

经过预训练,LLM此时已经掌握了大量知识,然而此时它只会无脑地词语接龙,还不会与人聊天。 SFT阶段就需要把半成品LLM施加一个自定义的聊天模板进行微调。 例如模型遇到这样的模板【问题->回答,问题->回答】后不再无脑接龙,而是意识到这是一段完整的对话结束。 称这个过程为指令微调,就如同让已经学富五车的「牛顿」先生适应21世纪智能手机的聊天习惯,学习屏幕左侧是对方消息,右侧是本人消息这个规律。 在训练时,MiniMind的指令和回答长度被截断在512,是为了节省显存空间。就像我们学习时,会先从短的文章开始,当学会写作200字作文后,800字文章也可以手到擒来。 在需要长度拓展时,只需要准备少量的2k/4k/8k长度对话数据进行进一步微调即可(此时最好配合RoPE-NTK的基准差值)。

其它训练步骤

人类反馈强化学习(Reinforcement Learning from Human Feedback, RLHF)

在前面的训练步骤中,模型已经具备了基本的对话能力,但是这样的能力完全基于单词接龙,缺少正反样例的激励。 模型此时尚未知什么回答是好的,什么是差的。我们希望它能够更符合人的偏好,降低让人类不满意答案的产生概率。 这个过程就像是让模型参加新的培训,从优秀员工的作为例子,消极员工作为反例,学习如何更好地回复。
此处使用的是RLHF系列之-直接偏好优化(Direct Preference Optimization, DPO)。 与PPO(Proximal Policy Optimization)这种需要奖励模型、价值模型的RL算法不同; DPO通过推导PPO奖励模型的显式解,把在线奖励模型换成离线数据,Ref模型输出可以提前保存。 DPO性能几乎不变,只用跑 actor_model 和 ref_model 两个模型,大大节省显存开销和增加训练稳定性。

PS:RLHF训练步骤并非必须,此步骤难以提升模型“智力”而通常仅用于提升模型的“礼貌”,有利(符合偏好、减少有害内容)也有弊(样本收集昂贵、反馈偏差、多样性损失)。

知识蒸馏(Knowledge Distillation, KD)

在前面的所有训练步骤中,模型已经完全具备了基本能力,通常可以学成出师了。 而知识蒸馏可以进一步优化模型的性能和效率,所谓知识蒸馏,即学生模型面向教师模型学习。 教师模型通常是经过充分训练的大模型,具有较高的准确性和泛化能力。 学生模型是一个较小的模型,目标是学习教师模型的行为,而不是直接从原始数据中学习。

在SFT学习中,模型的目标是拟合词Token分类硬标签(hard labels),即真实的类别标签(如 0 或 6400)。 在知识蒸馏中,教师模型的softmax概率分布被用作软标签(soft labels)。小模型仅学习软标签,并使用KL-Loss来优化模型的参数。

通俗地说,SFT直接学习老师给的解题答案。而KD过程相当于“打开”老师聪明的大脑,尽可能地模仿老师“大脑”思考问题的神经元状态。
例如,当老师模型计算1+1=2这个问题的时候,最后一层神经元a状态为0,神经元b状态为100,神经元c状态为-99… 学生模型通过大量数据,学习教师模型大脑内部的运转规律。

这个过程即称之为:知识蒸馏。 知识蒸馏的目的只有一个:让小模型体积更小的同时效果更好。 然而随着LLM诞生和发展,模型蒸馏一词被广泛滥用,从而产生了“白盒/黑盒”知识蒸馏两个派别。
GPT-4这种闭源模型,由于无法获取其内部结构,因此只能面向它所输出的数据学习,这个过程称之为黑盒蒸馏,也是大模型时代最普遍的做法。

黑盒蒸馏与SFT过程完全一致,只不过数据是从大模型的输出收集,因此只需要准备数据并且进一步FT即可。 注意更改被加载的基础模型为full_sft_*.pth,即基于微调模型做进一步的蒸馏学习。
./dataset/sft_1024.jsonl与./dataset/sft_2048.jsonl 均收集自qwen2.5-7/72B-Instruct大模型,可直接用于SFT以获取Qwen的部分行为。

LoRA (Low-Rank Adaptation)

LoRA是一种高效的参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)方法,旨在通过低秩分解的方式对预训练模型进行微调。 相比于全参数微调(Full Fine-Tuning),LoRA 只需要更新少量的参数。
LoRA 的核心思想是:在模型的权重矩阵中引入低秩分解,仅对低秩部分进行更新,而保持原始预训练权重不变。 代码可见./model/model_lora.py和train_lora.py,完全从0实现LoRA流程,不依赖第三方库的封装。

非常多的人困惑,如何使模型学会自己私有领域的知识?如何准备数据集?如何迁移通用领域模型打造垂域模型?
这里举几个例子,对于通用模型,医学领域知识欠缺,可以尝试在原有模型基础上加入领域知识,以获得更好的性能。
同时,我们通常不希望学会领域知识的同时损失原有基础模型的其它能力,此时LoRA可以很好的改善这个问题。 只需要准备如下格式的对话数据集放置到./dataset/lora_xxx.jsonl,启动 python train_lora.py 训练即可得到./out/lora/lora_xxx.pth新模型权重。

后续我们放到下篇!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2383306.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SQLMesh 宏操作符详解:@IF 的条件逻辑与高级应用

SQLMesh 的 IF 宏提供了一种在 SQL 查询中嵌入条件逻辑的方法,允许根据运行时条件动态调整查询结构。本文深入探讨 IF 的语法、使用场景及实际案例,帮助开发者构建更灵活、可维护的 SQL 工作流。 1. IF 宏简介 IF 是 SQLMesh 提供的条件逻辑宏&#xff…

【爬虫】12306自动化购票

上文: 【爬虫】12306查票-CSDN博客 下面是简单的自动化进行抢票,只写到预定票,没有写完登陆, 跳出登陆后与上述代码同理修改即可。 感觉xpath最简单,复制粘贴: 还有很多写法: 官网地址&#…

【Django系统】Python+Django携程酒店评论情感分析系统

Python Django携程酒店评论情感分析系统 项目概述 这是一个基于 Django 框架开发的酒店评论情感分析系统。系统使用机器学习技术对酒店评论进行情感分析,帮助酒店管理者了解客户反馈,提升服务质量。 主要功能 评论数据导入:支持导入酒店…

spring cloud alibaba-Geteway详解

spring cloud alibaba-Gateway详解 Gateway介绍 在 Spring Cloud Alibaba 生态系统中,Gateway 是一个非常重要的组件,用于构建微服务架构中的网关服务。它基于 Spring Cloud Gateway 进行扩展和优化,提供了更强大的功能和更好的性能。 Gat…

c#中添加visionpro控件(联合编程)

vs添加vp控件 创建窗体应用 右键选择项 点击确定 加载CogAcqfifoTool工具拍照 设置参数保存.vpp 保存为QuickBuild或者job, ToolBlock 加载保存的acq工具 实例化相机工具类 //引入命名空间 using Cognex.VisionPro; //实例化一个相机工具类 CogAcqFifoTool cogAcqFifoTool n…

性能测试-mysql监控

mysql常用监控指标 慢查询sql 慢查询:指执行速度低于设置的阀值的sql语句 作用:帮助定位查询速度较慢的sql语句,方便更好的优化数据库系统的性能 开启mysql慢查询日志 参数说明: slow_query_log:慢查询日志开启状态【on&#xf…

游戏引擎学习第301天:使用精灵边界进行排序

回顾并为今天的内容做准备 昨天,我们解决了一些关于排序的问题,这对我们清理长期存在的Z轴排序问题很有帮助。这个问题我们一直想在开始常规游戏代码之前解决。虽然不确定是否完全解决了问题,但我们提出了一个看起来合理的排序标准。 有两点…

【AI生成PPT】使用ChatGPT+Overleaf自动生成学术论文PPT演示文稿

【AI生成PPT】使用ChatGPTOverleaf自动生成学术论文PPT演示文稿 文章摘要:使用ChatGPTBeamer自动生成学术论文PPT演示文稿​​Beamer​​是什么Overleaf编辑工具ChatGPT生成Beamer Latex代码论文获取prompt设计 生成结果 文章摘要: 本文介绍了一种高效利…

局部放大maya的视图HUD文字大小的方法

一、问题描述: 有网友问:有办法局部放大maya的字体吗比如hud中currenttime打开之后画面右下角有个frame 想放大一下能做到吗? 在 Maya 中,可以通过自定义 HUD(Heads-Up Display)元素的字体大小来局部放大特…

初识Linux · NAT 内网穿透 内网打洞 代理

目录 前言: 内网穿透和打洞 NAPT表 内网穿透 内网打洞 正向/反向代理 前言: 本文算是网络原理的最后一点补充,为什么说是补充呢,因为我们在前面第一次介绍NAT的时候详细介绍的是报文从子网到公网,却没有介绍报文…

STM32接收红外遥控器的遥控信号

经过几天早晨的学习,终于把遥控器的红外信号给搞通了,特此记录一下;其实说白了,红外遥控就是高低电平的信号,用时间来区分是二进制的0还是1;然后把这些0或1,在组装成一个32位的数基本就算是完事…

Redis从入门到实战 - 高级篇(下)

一、Redis键值设计 1. 优雅的key结构 Redis的Key虽然可以自定义,但最好遵循下面几个最佳实践约定: 遵循基本格式:[业务名称]:[数据名]:[id]长度不超过44字节不包含特殊字符 例如:我们的登录业务,保存用户信息&…

GUI实验

题目: 编程包含一个标签和一个按钮,单击按钮时,标签的内容在"你好"和"再见"之间切换。 分析: 导入所需的Java库:程序使用了 javax.swing 包中的一些类来创建图形用户界面。 创建一个 JFrame 对象…

量子计算 | 量子密码学的挑战和机遇

量子计算在密码学中的应用现主要体现在对现有加密算法的威胁上。最著名的例子是Shor算法,该算法能够在多项式时间内分解大整数,从而威胁到基于大数分解的加密算法,如RSA加密。此外,量子计算还可以加速某些类型的密码分析&#xff…

分享一些多模态文档解析思路

多模态文档解析思路小记 作者:Arlene 原文:https://zhuanlan.zhihu.com/p/1905635679293122466 多模态文档解析内容涉及:文本、表格和图片 解析思路v1 基于mineru框架对pdf文件进行初解析 其具备较完整的布局识别和内容识别,并将…

AI知识梳理——RAG、Agent、ReAct、LangChain、LangGraph、MCP、Function Calling、JSON-RPC

AI技术I AI技术II RAG 📌 高度凝练表达 RAG (检索增强生成)是一种结合信息检索与生成式人工智能的技术框架,旨在提升大型语言模型(LLM)的输出准确性和实用性。通过在生成响应前引入外部知识库的信息&#…

【实用教程】如何快速搭建一套私有的埋点系统?

这篇教程将基于开源项目-ClkLog,教大家快速搭建一套自有的埋点系统,从0开始完成数据采集、分析与展示,全流程掌控用户行为数据。 ClkLog是一款支持私有化部署的全开源用户行为数据采集与分析系统,兼容Web、App、小程序多端埋点&am…

深入解析 Uniswap:自动做市商模型的数学推导与智能合约架构

目录 1. 自动做市商(AMM)模型的数学推导1.1 恒定乘积公式推导1.2 价格影响与滑点 2. Uniswap 智能合约架构解析2.1 核心合约(Core)2.1.1 工厂合约(Factory)2.1.2 交易对合约(Pair) 2…

React 19版本refs也支持清理函数了。

文章目录 前言一、refs 支持清理函数二、案例演示1.useEffect写法2.React 19改进 的ref写法 总结 前言 React 19版本发布了ref支持清理函数了,这样就可以达到useEffect一样的效果了。为啥需要清理函数呢,这是因为节约内存。 清理事件监听(避…

阿尔泰科技助力电厂——520为爱发电!

当城市的霓虹在暮色中亮起,当千万个家庭在温暖中共享天伦,总有一群默默的 "光明守护者" 在幕后坚守 —— 它们是为城市输送能量的电厂,更是以科技赋能电力行业的阿尔泰科技。值此 520 爱意满满的日子,阿尔泰科技用硬核技…