OpenCV中的光流估计方法详解

news2025/5/18 9:39:40

文章目录

    • 一、引言
    • 二、核心算法原理
      • 1. 光流法基本概念
      • 2. 算法实现步骤
    • 三、代码实现详解
      • 1. 初始化设置
      • 2. 特征点检测
      • 3. 光流计算与轨迹绘制
    • 四、实际应用效果
    • 五、优化方向
    • 六、结语

一、引言

在计算机视觉领域,运动目标跟踪是一个重要的研究方向,广泛应用于视频监控、自动驾驶、人机交互等场景。本文将介绍如何使用OpenCV中的Lucas-Kanade光流法实现简单的运动目标轨迹跟踪,并详细解析代码实现。

二、核心算法原理

1. 光流法基本概念

光流(Optical Flow)是图像中物体运动造成的视觉"流动",描述了像素点在连续帧之间的运动模式。Lucas-Kanade算法是一种经典的稀疏光流算法,它基于以下三个假设:

  • 亮度恒定(同一特征点的亮度不随时间变化)
  • 时间持续性(运动随时间缓慢变化)
  • 空间一致性(邻近点有相似运动)

2. 算法实现步骤

  1. 特征点检测:使用Shi-Tomasi角点检测
  2. 光流计算:金字塔Lucas-Kanade方法
  3. 轨迹绘制:连接连续帧中的特征点

三、代码实现详解

1. 初始化设置

import numpy as np
import cv2

# 视频读取和参数初始化
cap = cv2.VideoCapture('test.avi')
color = np.random.randint(0,255,(100,3))  # 随机颜色用于轨迹绘制

2. 特征点检测

# 读取第一帧并转换为灰度图
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)

# Shi-Tomasi角点检测参数
feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7)
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)
  • 使用角点检测方法找到特征点
goodFeaturesToTrack(image,maxCorners,qualityLevel,minDistance,
					corners=None,mask=None,blockSize=None)
  • image:输入单通道图像。用灰度图
  • maxCorners:设定最大的角点个数,是最有可能的角点数,如果这个参数不大于0,那么表示没有角点数的限制。
  • qualityLevel:图像角点的最小可接受参数,质量测量值乘以这个参数就是最小特征值,小于这个数的会被抛弃。
  • minDistance:角点之间最小的欧氏距离
  • mask:检测区域,如果图像不是空的,它指定检测角的区域。
  • 返回所有角点坐标位置:corners

3. 光流计算与轨迹绘制

# LK光流参数
lk_params = dict(winSize=(15,15), maxLevel=2)

while True:
    ret, frame = cap.read()
    if not ret:
        break
    
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    
    # 计算光流
    p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
    
    # 筛选成功跟踪的点
    good_new = p1[st==1]
    good_old = p0[st==1]
    
    # 绘制轨迹
    for i, (new, old) in enumerate(zip(good_new, good_old)):
        a, b = new.ravel().astype(int)
        c, d = old.ravel().astype(int)
        mask = cv2.line(mask, (a,b), (c,d), color[i].tolist(), 2)
    
    img = cv2.add(frame, mask)
    cv2.imshow('frame', img)
    
    # 更新前一帧数据
    old_gray = frame_gray.copy()
    p0 = good_new.reshape(-1,1,2)

计算光流,获取新的特征点位置和状态

calcOpticalFlowPyrLK(prevImg,nextImg,prevPts,nextPts,status=None,err=None,winSize=None,maxLevel=None,
                     criteria=None,flags=None,minEigThreshold=None)
  • prevImg:前一帧图像
  • nextImg:当前帧图像
  • prevPts:前一帧图像中特征点坐标位置
  • nextPts:当前帧图像中特征点坐标,可以为None
  • winSize:搜索窗口的大小
  • maxLevel:金字塔层数
  • criteria:停止迭代的准则
  • 返回值
  • nextPts:在当前帧中估计出的特征点坐标
  • status:一个与prevPts一样大小的状态向量,用于表示特征点是否被成功跟踪到。
  • err:一个与prevPts一样大小的误差向量,用于表示估计误差

四、实际应用效果

运行程序后,可以看到视频中检测到的特征点及其运动轨迹。不同颜色的线条代表不同特征点的运动路径,直观展示了物体的运动情况。

显示效果如下:左边是一段有很多人在走动的视频,右边就是根据人物运动的轨迹画出的轨迹图。
在这里插入图片描述

五、优化方向

  1. 特征点选择优化:可以尝试其他特征检测算法如SIFT、SURF等
  2. 运动模型改进:引入卡尔曼滤波等预测算法提高跟踪稳定性
  3. 遮挡处理:添加特征点重新检测机制应对遮挡情况
  4. 性能优化:使用多线程处理提高实时性

六、结语

本文实现了一个基于OpenCV的简单运动目标跟踪系统,展示了光流法的基本应用。虽然实现相对简单,但包含了目标跟踪的核心思想。读者可以在此基础上进行扩展,开发更复杂的跟踪系统。

我们定能不负所托 不负所望!!!🚀🚀🚀

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2378413.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

NBA足球赛事直播源码体育直播M33模板赛事源码

源码名称:体育直播赛事扁平自适应M33直播模板源码 开发环境:帝国cms7.5 空间支持:phpmysql 带软件采集,可以挂着自动采集发布,无需人工操作! 演示地址:NBA足球赛事直播源码体育直播M33模板赛事…

电子电器架构 --- 整车造车阶段四个重要节点

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 钝感力的“钝”,不是木讷、迟钝,而是直面困境的韧劲和耐力,是面对外界噪音的通透淡然。 生活中有两种人,一种人格外在意别人的眼光;另一种人无论…

黑马点评-用户登录

文章目录 用户登录发送短信验证码注册/登录校验登录 用户登录 发送短信验证码 public Result sendCode(String phone, HttpSession session) {// 1.校验手机号if (RegexUtils.isPhoneInvalid(phone)) {// 2.如果不符合,返回错误信息return Result.fail("手机…

十二、Hive 函数

作者:IvanCodes 日期:2025年5月1日 专栏:Hive教程 在数据处理的广阔天地中,我们常常需要对数据进行转换、计算、清洗或提取特定信息。Hive 提供了强大的内置运算符和丰富的内置函数库,它们就像魔法师手中的魔法棒&…

No More Adam: 新型优化器SGD_SaI

一.核心思想和创新点 2024年12月提出的SGD-SaI算法(Stochastic Gradient Descent with Scaling at Initialization)本质上是一种在训练初始阶段对不同参数块(parameter block)基于**梯度信噪比(g-SNR, Gradient Signa…

JSP链接MySQL8.0(Eclipse+Tomcat9.0+MySQL8.0)

所用环境 Eclipse Tomcat9.0 MySQL8.0.21(下载:MySQL Community Server 8.0.21 官方镜像源下载 | Renwole) mysql-connector-java-8.0.21(下载:MySQL :: Begin Your Download) .NET Framework 4.5.2(下…

SEO长尾词与关键词优化实战

内容概要 在SEO优化体系中,长尾关键词与核心关键词的协同作用直接影响流量获取效率与用户转化路径。长尾词通常由3-5个词组构成,搜索量较低但意图明确,能精准触达细分需求用户;核心关键词则具备高搜索量与广泛覆盖能力&#xff0…

机器学习-人与机器生数据的区分模型测试-数据处理1

附件为训练数据,总体的流程可以作为参考。 导入依赖 import pandas as pd import os import numpy as np from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.ensemble import RandomForestClassifier,VotingClassifier from skle…

HelloWorld

HelloWorld 新建一个java文件 文件后缀名为 .javahello.java【注意】系统可能没有显示文件后缀名,我们需要手动打开 编写代码 public class hello {public static void main(String[] args) {System.out.print(Hello,World)} }编译 javac java文件,会生…

SEO 优化实战:ZKmall模板商城的 B2C商城的 URL 重构与结构化数据

在搜索引擎算法日益复杂的今天,B2C商城想要在海量信息中脱颖而出,仅靠优质商品和营销活动远远不够。ZKmall模板商城以实战为导向,通过URL 重构与结构化数据优化两大核心策略,帮助 B2C 商城实现从底层架构到搜索展示的全面升级&…

数字万用表与指针万用表使用方法及注意事项

在电子测量领域,万用表是极为常用的工具,数字万用表和指针万用表各具特点。熟练掌握它们的使用方法与注意事项,能确保测量的准确性与安全性。下面为您详细介绍: 一 、数字万用表按钮功能 > 进入及退出手动量程模式 每 按 […

【读代码】端到端多模态语言模型Ultravox深度解析

一、项目基本介绍 Ultravox是由Fixie AI团队开发的开源多模态大语言模型,专注于实现音频-文本的端到端实时交互。项目基于Llama 3、Mistral等开源模型,通过创新的跨模态投影架构,绕过了传统语音识别(ASR)的中间步骤,可直接将音频特征映射到语言模型的高维空间。 核心优…

RabbitMQ工作流程及使用方法

一、什么是RabbitMQ RabbitMQ 是一款基于 ‌AMQP(高级,消息队列协议)‌ 的开源消息中间件,专为分布式系统设计,用于实现应用程序间的异步通信,其核心功能是通过 ‌消息代理(Message Broker&…

算法:分治法

实验内容 在一个2kⅹ2k个方格组成的棋盘中,若恰有一个方格与其他方格不同,则称该方格为特殊方格,且称该棋盘为一特殊棋盘。 显然,特殊方格出现的位置有4k 种情况,即k>0,有4k 种不同的特殊棋盘 棋盘覆盖&#xff1a…

MySQL初阶:sql事务和索引

索引(index) 可以类似理解为一本书的目录,一个表可以有多个索引。 索引的意义和代价 在MySQL中使用select进行查询时会经过: 1.先遍历表 2.将条件带入每行记录中进行判断,看是否符合 3.不符合就跳过 但当表中的…

docker部署第一个Go项目

1.前期准备 目录结构 main.go package mainimport ("fmt""github.com/gin-gonic/gin""net/http" )func main() {fmt.Println("\n .::::.\n .::::::::.\n :::::::::::\n …

Visual Studio2022跨平台Avalonia开发搭建

由于我已经下载并安装了 VS2022版本,这里就跳过不做阐述。 1.安装 Visual Studio 2022 安装时工作负荷Tab页勾选 ‌“.NET 桌面开发”‌ 和“Visual Studio扩展开发”‌ ,这里由于不是用的微软的MAUI,所以不用选择其他的来支持跨平台开发&a…

css iconfont图标样式修改,js 点击后更改样式

背景: 在vue项目中,通过点击/鼠标覆盖,更改选中元素的样式,可以通过js逻辑,也可以根据css样式修改。包括以下内容:iconfont图标的引入以及使用,iconfont图标样式修改【导入文件是纯白&#xff0…

开源项目实战学习之YOLO11:12.4 ultralytics-models-sam-memory_attention.py源码分析

👉 点击关注不迷路 👉 点击关注不迷路 👉 另外,前些天发现了一个巨牛的AI人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。感兴趣的可以点击相关跳转链接。 点击跳转到网站。 ultralytics-models-sam 1.sam-modules-memory_attention.pyblocks.py: 定义模…

【沉浸式求职学习day42】【算法题:滑动窗口】

沉浸式求职学习 长度最小的子数组水果成篮 关于算法题:滑动窗口的几个题目 长度最小的子数组 给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组…