2025认证杯数学建模第二阶段C题完整论文(代码齐全)化工厂生产流程的预测和控制

news2025/5/17 6:08:01

2025认证杯数学建模第二阶段C题完整论文(代码齐全)化工厂生产流程的预测和控制,详细信息见文末名片

第二阶段问题 1 分析

在第二阶段问题 1 中,由于在真实反应流程中输入反应物的量改变后,输出产物会有一定延时,所以需要对这个延时进行估计,以更准确地描述生产过程。此问题的关键影响因素是输入输出数据的相关性和系统的动态特性,多输入多输出系统的延时情况复杂,可能存在耦合延时。基于互相关分析、Granger 因果检验、系统辨识等理论进行建模。输入变量为 IN1、IN2、IN3、IN4、IN5,输出变量为 SO2 和 H2S,核心参数是延时(\tau)。在模型构建方面,可通过互相关分析计算输入与输出的互相关函数,找到峰值位置确定延时;使用系统辨识方法,如用 ARX 模型拟合,通过优化算法估计延时参数;利用 Granger 检验验证输入对输出的滞后因果性。同时,要注意分通道处理多输入耦合延时,确保数据采样频率足够高。将数据代入模型,即可估计出延时。

第二阶段问题 2 分析

第二阶段问题 2 要求考虑延时效应后,建立更准确的模型,在未来特定时间窗口((t + t')到(t + t'')个时间单位)内预测不合格事件发生的时间,为化工厂提供更有效的预警信号。此问题的关键影响因素是延时模型的准确性和时间序列预测方法的有效性。基于延时模型、时间序列预测、事件定位等理论进行建模。输入变量为从开始直至时刻 t 的输入数据,输出变量为未来(t + t')到(t + t'')个时间单位之间不合格事件发生的时间,核心参数为延时(\tau)。在模型构建方面,在问题 1 的模型中加入延时项,根据延时调整时间窗口,使用 LSTM、TCN 等模型进行时间序列预测,结合阈值判断预测不合格事件发生的时间。同时,要验证延时是否时变,动态更新参数,考虑化工过程的不确定性,对模型进行调整和优化。将相关数据代入模型,就能实现考虑延时的精准预警。

第二阶段问题 3 分析

第二阶段问题 3 的目标是设计一套对反应物流量的控制方案,使输出产物全程尽量保持在合格状态。此问题的关键影响因素是控制策略的有效性和化工过程的安全性约束,需要在两者之间找到平衡。基于模型预测控制、强化学习、化工过程安全性约束等理论进行建模。输入变量为反应物流量(IN1 - IN5),输出变量为 SO2 和 H2S 的浓度值,控制目标是使输出产物全程尽量保持在合格状态。在模型构建方面,可采用前馈控制反向求解输入调整量,根据期望的输出值求解输入调整量;利用强化学习构建马尔可夫决策过程,训练智能体选择最优的控制动作;在优化过程中考虑流量阀速率限制等安全约束条件。同时,要模拟控制方案加入噪声测试鲁棒性,在线更新模型以适应系统时变特性。通过这些步骤,就能设计出有效的反应物流量控制方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2377396.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis——底层数据结构

SDS(simple dynamic string): 优点: O1时间获取长度(char *需要ON)快速计算剩余空间(alloc-len),拼接时根据所需空间自动扩容,避免缓存区溢出(ch…

ChatGPT 能“记住上文”的原因

原因如下 你把对话历史传给了它 每次调用 OpenAI 接口时,都会把之前的对话作为参数传入(messages 列表),模型“看见”了之前你说了什么。 它没有长期记忆 它不会自动记住你是谁或你说过什么,除非你手动保存历史并再次…

大疆无人机自主飞行解决方案局限性及增强解决方案-AIBOX:特色行业无人机巡检解决方案

大疆无人机自主飞行解决方案局限性及增强解决方案-AIBOX:特色行业无人机巡检解决方案 大疆无人机是低空行业无人机最具性价比的产品,尤其是大疆机场3的推出,以及持续自身产品升级迭代,包括司空2、大疆智图以及大疆智运等专业软件和…

医学影像系统性能优化与调试技术:深度剖析与实践指南

🧑 博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C, C#, Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C、C#等开发语言,熟悉Java常用开…

day 25

*被遗忘的一集 程序:二进制文件,文件存储在磁盘中,例如/usr/bin/目录下 进程:进程是已启动的可执行程序的运行实例。 *进程和程序并不是一一对应的关系,相同的程序运行在不同的数据集上就是不同的进程 *进程还具有并…

吉客云数据集成到金蝶云星空的最佳实践

吉客云数据集成到金蝶云星空的技术案例分享 在本次技术案例中,我们将探讨如何通过仓库方案-I0132,将吉客云的数据高效集成到金蝶云星空。此方案旨在解决企业在数据对接过程中遇到的多种技术挑战,包括数据吞吐量、实时监控、异常处理和数据格…

使用Mathematica制作Lorenz吸引子的轨道追踪视频

Lorenz奇异吸引子是混沌理论中最早被发现和研究的吸引子之一,它由Edward Lorenz在1963年研究确定性非周期流时提出。Lorenz吸引子以其独特的"蝴蝶"形状而闻名,是混沌系统和非线性动力学的经典例子。 L NDSolveValue[{x[t] -3 (x[t] - y[t]),…

简单图像自适应亮度对比度调整

一、背景介绍 继续在刷对比度调整相关算法,偶然间发现了这个简单的亮度/对比度自适应调整算法,做个简单笔记记录。也许后面用得到。 二、自适应亮度调整 1、基本原理 方法来自论文:Adaptive Local Tone Mapping Based on Retinex for High Dynamic Ran…

深入理解二叉树:遍历、存储与算法实现

在之前的博客系列中,我们系统地探讨了多种线性表数据结构,包括顺序表、栈和队列等经典结构,并通过代码实现了它们的核心功能。从今天开始,我们将开启一个全新的数据结构篇章——树结构。与之前讨论的线性结构不同,树形…

【Win32 API】 lstrcmpA()

作用 比较两个字符字符串(比较区分大小写)。 lstrcmp 函数通过从第一个字符开始检查,若相等,则检查下一个,直到找到不相等或到达字符串的末尾。 函数 int lstrcmpA(LPCSTR lpString1, LPCSTR lpString2); 参数 lpStr…

(C语言)超市管理系统 (正式版)(指针)(数据结构)(清屏操作)(文件读写)

目录 前言: 源代码: product.h product.c fileio.h fileio.c main.c 代码解析: 一、程序结构概述 二、product.c 函数详解 1. 初始化商品列表 Init_products 2. 添加商品 add_product 3. 显示商品 display_products 4. 修改商品 mo…

NAT转换和ICMP

NAT nat原理示意 nat实现 ICMP ICMP支持主机或路由器: 差错或异常报告网络探寻 2类icmp报文: 差错报告报文(5种) 目的不可达源抑制--拥塞控制超时&超期--TTL超时参数问题--问题报文丢弃重定向--不应该由这个路由器转发&a…

【专利信息服务平台-注册/登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

BUUCTF——web刷题第一页题解

共31题,admin那题没有,因为环境问题,我做的非常卡 目录 极客大挑战 2019]Havefun [HCTF 2018]WarmU [ACTF2020 新生赛]Include [ACTF2020 新生赛]Exec [GXYCTF2019]Ping Ping Ping [SUCTF 2019]EasySQL [极客大挑战 2019]LoveSQL [极…

哪个品牌的智能对讲机好用?推荐1款,能扛事更智能

在专业通信领域,智能对讲机早已突破传统设备的局限,成为集通信、调度、数据传输于一体的智能化终端。面对复杂多变的作业环境,用户对设备的稳定性、通信效率和智能化水平提出了更高要求。但是,市面上产品同质化严重,部…

【Win32 API】 lstrcpyA()

作用 将字符串复制到指定的字符串缓冲区。 函数 LPSTR lstrcpyA(LPSTR lpString1, LPCSTR lpString2); 参数 lpString1 类型:LPTSTR 一个缓冲区,用于接收由 lpString2 参数指向的字符串的内容。 缓冲区必须足够大才能包含字符串,包括终止…

Vue3——Watch侦听器

目录 手动指定监听对象 侦听ref对象 侦听ref对象中的某个属性 reactive写法 watchEffect 自动侦听 多源侦听 一次性侦听器 watch 是⼀个⽤于观察和响应Vue响应式系统中数据变化的⽅法。它允许你指定⼀个数据源(可以是 响应式引⽤、计算属性、组件的属性等&#xf…

Go的单测gomock及覆盖率命令

安装gomock: go get github.com/golang/mock/gomockgo get github.com/golang/mock/mockgen 使用 mockgen 生成 mock 代码: 参考 mockgen -sourceservice/user.go -destinationservice/mocks/mock_user_service.go -packagemocks go test -coverprofilecoverage.out…

Leetcode209做题笔记

力扣209 题目分析:想象一个窗口遍历着这个数组,不断扩大右边界,让r。往窗口中添加数字: 此时我们找到了这个窗口,它的和满足了大于等于target的条件,题目让我求最短的,那么我们就尝试来缩短它&…

Suna: 开源多面手 AI 代理

GitHub:GitHub - kortix-ai/suna: Suna - Open Source Generalist AI Agent 更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现 - 小众AI Suna 是一个完全开源的 AI 助手,可帮助您轻松完成实际任务。通过自然对话&#xff0c…