吴恩达机器学习笔记:特征与多项式回归

news2025/7/14 19:21:18

1.特征和多项式回归

如房价预测问题,
在这里插入图片描述
ℎθ (x) = θ0 + θ1 × frontage + θ2 × deptℎ
x1 = frontage(临街宽度),x2 = deptℎ(纵向深度),x = frontage ∗ deptℎ = area (面积),则: h θ ( x ) = θ 0 + θ 1 x h_\theta(x) = \theta_0 + \theta_1x hθ(x)=θ0+θ1x
在这里插入图片描述

线性回归并不适用于所有数据,有时我们需要曲线来适应我们的数据,比如一个二次方模型: h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 2 ℎ_\theta(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 hθ(x)=θ0+θ1x1+θ2x22
或者三次方模型: h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 2 + θ 3 x 3 3 ℎ_\theta(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_3x_3^3 hθ(x)=θ0+θ1x1+θ2x22+θ3x33

通常我们需要先观察数据然后再决定准备尝试怎样的模型。 另外,我们可以令:
x2 = x 2 2 x_2^2 x22, x3 = x 3 3 x_3^3 x33,从而将模型转化为线性回归模型。 根据函数图形特性,我们还可以使:
h θ ( x ) = θ 0 + θ 1 ⋅ size + θ 2 ⋅ size 2 h_\theta(x) = \theta_0 + \theta_1 \cdot \text{size} + \theta_2 \cdot \text{size}^2 hθ(x)=θ0+θ1size+θ2size2或者:

h θ ( x ) = θ 0 + θ 1 ⋅ size + θ 2 ⋅ size ℎθ (x) = θ_0 + θ_1 \cdot \text{size} + θ_2 \cdot \sqrt{\text{size}} hθ(x)=θ0+θ1size+θ2size
注:如果我们采用多项式回归模型,在运行梯度下降算法前,特征缩放非常有必要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2377086.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LangChain4j正式发布-简化将 LLM 集成到 Java 应用程序过程

LangChain4j 的目标是简化将 LLM 集成到 Java 应用程序中的过程。 官网地址 源码地址 开源协议:Apache License 2.0 实现方法 统一 API:LLM 提供程序(如 OpenAI 或 Google Vertex AI)和嵌入(矢量)存储…

【C++】汇编角度分析栈攻击

栈攻击 介绍原理示例代码汇编分析 介绍原理 核心原理是通过 缓冲区溢出(Buffer Overflow) 等漏洞,覆盖栈上的关键数据(如返回地址、函数指针),从而改变程序执行流程; 在 C 中,每个…

Vue 3 打开 el-dialog 时使 el-input 获取焦点

运行代码:https://andi.cn/page/622178.html 效果:

C++23 views::repeat (P2474R2) 深入解析

文章目录 引言C20 Ranges库回顾什么是Rangesstd::views的作用 views::repeat概述基本概念原型定义工作原理应用场景初始化容器模拟测试数据 总结 引言 在C的发展历程中,每一个新版本都会带来一系列令人期待的新特性,这些特性不仅提升了语言的性能和表达…

OpenCv高阶(4.0)——案例:海报的透视变换

文章目录 前言一、工具函数模块1.1 图像显示函数1.2 保持宽高比的缩放函数1.3 坐标点排序函数 二、透视变换核心模块2.1 四点透视变换实现 三、主流程技术分解3.1 图像预处理3.2 轮廓检测流程3.3 最大轮廓处理 四、后处理技术4.1 透视变换4.2 形态学处理 五、完整代码总结 前言…

光谱相机的图像预处理技术

光谱相机的图像预处理技术旨在消除噪声、增强有效信息,为后续分析提供高质量数据。 一、预处理流程与技术要点 ‌辐射校正‌ ‌辐射定标‌:将图像灰度值转换为绝对辐射亮度,常用反射率法、辐亮度法和辐照度法消除传感器响应差异&#xff0…

k8s监控方案实践补充(一):部署Metrics Server实现kubectl top和HPA支持

k8s监控方案实践补充(一):部署Metrics Server实现kubectl top和HPA支持 文章目录 k8s监控方案实践补充(一):部署Metrics Server实现kubectl top和HPA支持一、Metrics Server简介二、Metrics Server实战部署…

嵌入式调试新宠!J-Scope:免费+实时数据可视化,让MCU调试效率飙升!

📌 痛点直击:调试还在用“断点打印”? 嵌入式开发中,你是否也经历过这些崩溃瞬间? 想实时观察变量变化,代码里插满printf,结果拖垮系统性能? 断点调试打断程序运行,时序…

微信小程序学习之搜索框

1、第一步&#xff0c;我们在index.json中引入vant中的搜索框控件&#xff1a; {"usingComponents": {"van-search": "vant/weapp/search/index"} } 2、第二步&#xff0c;直接在index.wxml中添加布局&#xff1a; <view class"index…

Altium Designer AD如何输出PIN带网络名的PDF装配图

Altium Designer AD如何输出PIN带网络名的PDF装配图 文描述在Altium Designer版本中设置焊盘网络名时遇到的问题&#xff0c;网络名大小不一致&#xff0c;部分PAD的网络名称未显示&#xff0c;可能涉及字符大小设置和版本差异。 参考 1.AD导出PCB装配图 https://blog.csd…

VMware虚拟机 安装 CentOS 7

原文链接: VMware虚拟机 安装 CentOS 7 安装准备 软件: VMware Workstation Pro 17.6.3 镜像: CentOS-7.0-1406-x86_64-DVD.iso 我打包好放这了&#xff0c;VMware 和 CentOS7 &#xff0c;下载即可。 关于VMware Workstation Pro 17.6.3&#xff0c;傻瓜式安装即可。 CentO…

Python训练打卡Day22

复习日&#xff1a; 1.标准化数据&#xff08;聚类前通常需要标准化&#xff09; scaler StandardScaler() X_scaled scaler.fit_transform(X) StandardScaler() &#xff1a;这部分代码调用了 StandardScaler 类的构造函数。在Python中&#xff0c;当你在类名后面加上括号…

Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise论文阅读

冷扩散&#xff1a;无需噪声的任意图像变换反转 摘要 标准扩散模型通常涉及两个核心步骤&#xff1a;图像降质 &#xff08;添加高斯噪声&#xff09;和图像恢复 &#xff08;去噪操作&#xff09;。本文发现&#xff0c;扩散模型的生成能力并不强烈依赖于噪声的选择&#xf…

嵌软面试每日一阅----通信协议篇(二)之TCP

一. TCP和UDP的区别 可靠性 TCP&#xff1a;✅ 可靠传输&#xff08;三次握手 重传机制&#xff09; UDP&#xff1a;❌ 不可靠&#xff08;可能丢包&#xff09; 连接方式 TCP&#xff1a;面向连接&#xff08;需建立/断开连接&#xff09; UDP&#xff1a;无连接&#xff0…

机器学习 --- 模型选择与调优

机器学习 — 模型选择与调优 文章目录 机器学习 --- 模型选择与调优一&#xff0c;交叉验证1.1 保留交叉验证HoldOut1.2 K-折交叉验证(K-fold)1.3 分层k-折交叉验证Stratified k-fold 二&#xff0c;超参数搜索三&#xff0c;鸢尾花数据集示例四&#xff0c;现实世界数据集示例…

AGI大模型(15):向量检索之调用ollama向量数据库

这里介绍将向量模型下载到本地,这里使用ollama,现在本地安装ollama,这里就不过多结束了。直接从下载开始。 1 下载模型 首先搜索模型,这里使用bge-large模型,你可以根据自己的需要修改。 点击进入,复制命令到命令行工具中执行。 安装后查看: 2 代码实现 先下载ollama…

什么是Agentic AI(代理型人工智能)?

什么是Agentic AI&#xff08;代理型人工智能&#xff09;&#xff1f; 一、概述 Agentic AI&#xff08;代理型人工智能&#xff09;是一类具备自主决策、目标导向性与持续行动能力的人工智能系统。与传统AI系统依赖外部输入和显式命令不同&#xff0c;Agentic AI在设定目标…

day 17 无监督学习之聚类算法

一、聚类流程 1. 利用聚类发现数据模式 无监督算法中的聚类&#xff0c;目的就是将数据点划分成不同的组或 “簇”&#xff0c;使得同一簇内的数据点相似度较高&#xff0c;而不同簇的数据点相似度较低&#xff0c;从而发现数据中隐藏的模式。 2. 对聚类后的类别特征进行可视…

时源芯微| KY键盘接口静电浪涌防护方案

KY键盘接口静电浪涌防护方案通过集成ESD保护元件、电阻和连接键&#xff0c;形成了一道有效的防护屏障。当键盘接口受到静电放电或其他浪涌冲击时&#xff0c;该方案能够迅速将过电压和过电流引导至地&#xff0c;从而保护后续电路免受损害。 ESD保护元件是方案中的核心部分&a…

CodeBuddy编程新范式

不会写&#xff1f;不想写&#xff1f; 腾讯推出的CodeBuddy彻底解放双手。 示例 以下是我对CodeBuddy的一个小体验。 我只用一行文字对CodeBuddy说明了一下我的需求&#xff0c;剩下的全部就交给了CodeBuddy&#xff0c;我需要做的就是验收结果即可。 1.首先CodeBuddy会对任…