互联网大厂Java求职面试:AI与大模型集成的云原生架构设计

news2025/5/16 12:31:16

互联网大厂Java求职面试:AI与大模型集成的云原生架构设计

引言

在现代互联网企业中,AI与大模型技术的应用已经成为不可或缺的一部分。特别是在短视频平台、电商平台和金融科技等领域,如何高效地将大模型集成到现有的云原生架构中是一个巨大的挑战。本文通过一场模拟面试,展示如何应对这些技术难题。

面试场景

第一轮提问:AI与大模型基础

面试官:郑薪苦,假设你在一家短视频平台工作,需要实现一个基于内容特征的智能推荐引擎,你会如何设计?

郑薪苦:这不就是用Spring AI搞个推荐系统嘛!首先得有个强大的Embedding模型把视频特征提取出来,然后用向量数据库存储这些特征,最后通过相似度计算给用户推荐最匹配的内容。不过说到特征提取,我倒是觉得这跟熬中药有点像,火候和配方不对,出来的效果就差强人意。

面试官:不错,那你能说说具体会用什么Embedding模型吗?

郑薪苦:当然,我会选择PGVector,它不仅支持高维向量,还能很好地进行分布式检索。至于冷启动问题嘛,就像新来的实习生一样,刚开始总是摸不着头脑,但我们可以用一些预训练模型先顶上。

面试官:很好,那我们继续。

第二轮提问:云原生架构设计

面试官:在云原生环境下,如何保证AI推理服务的高可用性和弹性扩展?

郑薪苦:哈哈,这个问题就像是问怎么让一群猴子在树上保持平衡!简单来说,我们需要用Kubernetes来做容器编排,再结合Istio服务网格来管理流量。这样即使某个节点挂了,也能迅速切换到其他健康的实例。

面试官:那如果遇到突发流量怎么办?

郑薪苦:这个嘛,就像突然下大雨,你得提前准备好雨伞。我们可以通过Helm Chart配置自动扩缩容策略,利用HPA(Horizontal Pod Autoscaler)动态调整Pod数量,保证系统稳定。

面试官:明白了,最后一个技术点。

第三轮提问:低代码开发

面试官:假设我们需要为业务方提供一个低代码平台来快速构建应用,你会如何设计?

郑薪苦:这可是我的拿手好戏啊!首先得有个强大的元数据模型,让业务人员可以拖拽组件生成表单。然后,通过Flowable这样的工作流引擎来处理复杂的业务逻辑。最后别忘了加上权限控制,不然业务方一不小心就把系统玩崩了。

面试官:听起来不错,那如何确保系统的灵活性和可维护性呢?

郑薪苦:这就像是养宠物,你得定期清理它的窝,不然就会臭气熏天。所以我们需要引入GitOps来管理代码版本,再结合CI/CD流水线自动化部署,确保每次更新都能平滑过渡。

面试官:非常感谢你的回答,我们会尽快通知你结果。

技术详解

Embedding模型与向量数据库

Embedding模型是将非结构化数据(如文本、图像)转换成固定长度向量的关键工具。常见的Embedding模型有BERT、RoBERTa等。向量数据库则用于存储和检索这些高维向量,例如Milvus、PGVector。

// 示例代码:使用PGVector进行向量检索
public List<Video> getRecommendations(String userId) {
    Vector userVector = getUserVector(userId);
    return pgVectorClient.searchSimilar(userVector, "videos", 10);
}

Kubernetes与Istio

Kubernetes负责容器编排,而Istio则专注于服务网格的流量管理。两者结合可以有效提升系统的弹性和可观测性。

# 示例配置:Kubernetes Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: ai-inference-service
spec:
  replicas: 3
  selector:
    matchLabels:
      app: ai-inference
  template:
    metadata:
      labels:
        app: ai-inference
    spec:
      containers:
      - name: ai-inference
        image: ai-inference:latest
        ports:
        - containerPort: 8080

低代码平台设计

低代码平台的核心是元数据驱动开发,通过可视化界面让用户快速构建应用。

// 示例代码:动态表单生成
public Form generateForm(Metadata metadata) {
    Form form = new Form();
    for (Field field : metadata.getFields()) {
        form.addField(createFormField(field));
    }
    return form;
}

常见陷阱与优化方向

  • 冷启动问题:预加载模型或使用轻量级模型作为临时替代。
  • 高并发处理:采用多级缓存架构,优化热点数据访问。
  • 系统监控:集成Prometheus和Grafana,实时监控关键指标。

发展趋势与替代方案

  • 边缘计算:将AI推理任务下沉到边缘节点,减少延迟。
  • Serverless架构:进一步简化运维,按需计费。
  • 多模态处理:整合多种数据类型(文本、图像、音频),提升系统智能化水平。

总结

通过这次模拟面试,我们深入了解了AI与大模型技术在云原生架构下的应用。郑薪苦以其独特的幽默风格和扎实的技术功底,为我们展示了如何解决复杂的技术难题。希望这篇文章能为你的技术之旅带来启发。

郑薪苦的幽默金句

  • “Embedding模型就像是熬中药,火候和配方不对,出来的效果就差强人意。”
  • “Kubernetes就像是猴群,你需要不断调整它们的位置,才能保持平衡。”
  • “低代码平台就像是养宠物,定期清理它的窝,不然就会臭气熏天。”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2376844.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

股指期货套期保值怎么操作?

股指期货套期保值就是企业或投资者通过持有与其现货市场头寸相反的期货合约&#xff0c;来对冲价格风险的一种方式。换句话说&#xff0c;就是你在股票市场上买了股票&#xff08;现货&#xff09;&#xff0c;担心股价下跌会亏钱&#xff0c;于是就在期货市场上卖出相应的股指…

基于IBM BAW的Case Management进行项目管理示例

说明&#xff1a;使用IBM BAW的难点是如何充分利用其现有功能根据实际业务需要进行设计&#xff0c;本文是示例教程&#xff0c;因CASE Manager使用非常简单&#xff0c;这里重点是说明如何基于CASE Manager进行项目管理&#xff0c;重点在方案设计思路上&#xff0c;其中涉及的…

黑马k8s(七)

1.Pod介绍 查看版本&#xff1a; 查看类型,这里加s跟不加s没啥区别&#xff0c;可加可不加 2.Pod基本配置 3.镜像拉去策略 本地没有这个镜像&#xff0c;策略是Never&#xff0c;启动失败 查看拉去策略&#xff1a; 更改拉去策略&#xff1a; 4.启动命令 运行的是nginx、busv…

九、HQL DQL七大查询子句

作者&#xff1a;IvanCodes 日期&#xff1a;2025年5月15日 专栏&#xff1a;Hive教程 Apache Hive 的强大之处在于其类 SQL 的查询语言 HQL&#xff0c;它使得熟悉 SQL 的用户能够轻松地对存储在大规模分布式系统&#xff08;如 HDFS&#xff09;中的数据进行复杂的查询和分析…

RTSP 播放器技术探究:架构、挑战与落地实践

RTSP 播放器为什么至今无法被淘汰&#xff1f; 在实时视频传输领域&#xff0c;RTSP&#xff08;Real-Time Streaming Protocol&#xff09;作为最基础、最常见的协议之一&#xff0c;至今依然被广泛用于监控设备、IP Camera、视频服务器等设备中。然而&#xff0c;要构建一个稳…

实验5 DNS协议分析与测量

实验5 DNS协议分析与测量 1、实验目的 了解互联网的域名结构、域名系统DNS及其域名服务器的基本概念 熟悉DNS协议及其报文基本组成、DNS域名解析原理 掌握常用DNS测量工具dig使用方法和DNS测量的基本技术 2、实验环境 硬件要求&#xff1a;阿里云云主机ECS 一台。 软件要…

【鸿蒙开发】性能优化

语言层面的优化 使用明确的数据类型&#xff0c;避免使用模糊的数据类型&#xff0c;例如ESObject。 使用AOT模式 AOT就是提前编译&#xff0c;将字节码提前编译成机器码&#xff0c;这样可以充分优化&#xff0c;从而加快执行速度。 未启用AOT时&#xff0c;一边运行一边进…

2025-05-13 学习记录--Python-循环:while循环 + while-else循环 + for循环 + 循环控制

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、循环 ⭐️ &#xff08;一&#xff09;、while循环 &#x1f36d; 初始条件设置 -- 通常是重复执行的 计数器while 条件(判…

Vue3学习(组合式API——生命周期函数基础)

目录 一、Vue3组合式API中的生命周期函数。 &#xff08;1&#xff09;各阶段生命周期涉及函数简单介绍。 <1>创建挂载阶段的生命周期函数。 <2>更新阶段的生命周期函数。 <3>卸载阶段的生命周期函数。 <4>错误处理的生命周期函数。 &#xff08;2&…

计量——检验与代理变量

1.非嵌套模型的检验 1Davidson-Mackinnon test 判断哪个模型好 log&#xff08;y&#xff09;β0β1x1β2x2β3x3u log&#xff08;y&#xff09;β0β1log&#xff08;x1&#xff09;β2log&#xff08;x2&#xff09;β3log&#xff08;x3&#xff09;u 1.对log&#xff…

HTML-实战之 百度百科(影视剧介绍)

本系列可作为前端学习系列的笔记&#xff0c;代码的运行环境是在HBuilder中&#xff0c;小编会将代码复制下来&#xff0c;大家复制下来就可以练习了&#xff0c;方便大家学习。 系列文章目录 HTML-1.1 文本字体样式-字体设置、分割线、段落标签、段内回车以及特殊符号 HTML…

计算机视觉---目标追踪(Object Tracking)概览

一、核心定义与基础概念 1. 目标追踪的定义 定义&#xff1a;在视频序列或连续图像中&#xff0c;对一个或多个感兴趣目标&#xff08;如人、车辆、物体等&#xff09;的位置、运动轨迹进行持续估计的过程。核心任务&#xff1a;跨帧关联目标&#xff0c;解决“同一目标在不同…

Weblogic SSRF漏洞复现(CVE-2014-4210)【vulhub靶场】

漏洞概述&#xff1a; Weblogic中存在一个SSRF漏洞&#xff0c;利用该漏洞可以发送任意HTTP请求&#xff0c;进而攻击内网中redis、fastcgi等脆弱组件。 漏洞形成原因&#xff1a; WebLogic Server 的 UDDI 组件&#xff08;uddiexplorer.war&#xff09;中的 SearchPublicR…

AI大模型应用:17个实用场景解锁未来

任何新技术的普及都需要经历一段漫长的过程&#xff0c;人工智能大模型也不例外。 尽管某些行业的从业者已经开始将大模型融入日常工作&#xff0c;但其普及程度仍远未达到“人手必备”的地步。 那么&#xff0c;究竟是什么限制了它的广泛应用&#xff1f;普通人如何才能用好…

java17

1.常见API之BigDecimal 底层存储方式&#xff1a; 2.如何分辨过时代码&#xff1a; 有横线的代码表示该代码已过时 3.正则表达式之字符串匹配 注意&#xff1a;如果X不是单一字符&#xff0c;需要加[]中括号 注意&#xff1a;1.想要表达正则表达式里面的.需要\\. 2.想要表…

C++算法(22):二维数组参数传递,从内存模型到高效实践

引言 在C程序设计中&#xff0c;二维数组的参数传递是许多开发者面临的棘手问题。不同于一维数组的相对简单性&#xff0c;二维数组在内存结构、类型系统和参数传递机制上都存在独特特性。本文将深入探讨静态数组、动态数组以及STL容器三种实现方式&#xff0c;通过底层原理分…

Lightpanda开源浏览器:专为 AI 和自动化而设计的无界面浏览器

​一、软件介绍 文末提供程序和源码下载 Lightpanda开源浏览器&#xff1a;专为 AI 和自动化而设计的无界面浏览器&#xff1b; Javascript execution Javascript 执行Support of Web APIs (partial, WIP)支持 Web API&#xff08;部分、WIP&#xff09;Compatible with Pla…

技术文档不完善,如何促进知识传承

建立统一的技术文档规范、引入文档自动化工具、将文档写作融入开发流程、建设团队知识共享文化 是促进知识传承的关键策略。在其中&#xff0c;尤应重视建立统一的技术文档规范&#xff0c;通过标准化文档结构、命名、版本管理等方式&#xff0c;提升文档质量和可维护性&#x…

Windows平台OpenManus部署及WebUI远程访问实现

前言&#xff1a;继DeepSeek引发行业震动后&#xff0c;Monica.im团队最新推出的Manus AI 产品正席卷科技圈。这款具备自主思维能力的全能型AI代理&#xff0c;不仅能精准解析复杂指令并直接产出成果&#xff0c;更颠覆了传统人机交互模式。尽管目前仍处于封闭测试阶段&#xf…

位运算题目:找到最接近目标值的函数值

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;找到最接近目标值的函数值 出处&#xff1a;1521. 找到最接近目标值的函数值 难度 8 级 题目描述 要求 Winston 构造了一个如上所示的函数 func \…