本文涉及知识点
C++线段树
P9349 [JOI 2023 Final] Stone Arranging 2
题目描述
JOI-kun has N N N go stones. The stones are numbered from 1 1 1 to N N N. The color of each stone is an integer between 1 1 1 and 1 0 9 10^9 109, inclusive. In the beginning, the color of Stone i i i ( 1 ≤ i ≤ N 1 \le i \le N 1≤i≤N) is A i A_i Ai.
From now, JOI-kun will perform N N N operations. He will put the stones on the table in a line. The operation i i i ( 1 ≤ i ≤ N 1 \le i \le N 1≤i≤N) will be performed as follows:
- JOI-kun will put Stone i i i on the immediate right of Stone i − 1 i - 1 i−1. However, when i = 1 i = 1 i=1, JOI-kun will put Stone 1 on the table.
- If there is a stone among Stones 1 , 2 , ⋯ , i − 1 1,2,\cdots,i-1 1,2,⋯,i−1 whose current color is the same as Stone i i i, let j j j be the maximum index of such stones, and JOI-kun will paint all of Stones j + 1 , j + 2 , ⋯ , i − 1 j+1,j+2,\cdots,i-1 j+1,j+2,⋯,i−1 with the color A i A_i Ai.
In order to confirm whether the operations are correctly performed, JOI-kun wants to know in advance the colors of the stones after all the operations are performed.
Given information of the go stones, write a program which determines the colors of the stones after the N N N operations are performed.
输入格式
Read the following data from the standard input.
N N N
A 1 A_1 A1
A 2 A_2 A2
⋮ \vdots ⋮
A N A_N AN
输出格式
Write N N N lines to the standard output. The i i i-th line ( 1 ≤ i ≤ N 1 \le i \le N 1≤i≤N) should contain the color of Stone i i i after the N N N operations are performed.
输入输出样例 #1
输入 #1
6
1
2
1
2
3
2
输出 #1
1
1
1
2
2
2
输入输出样例 #2
输入 #2
10
1
1
2
2
1
2
2
1
1
2
输出 #2
1
1
1
1
1
1
1
1
1
2
说明/提示
Samples
Sample 1
The operations are performed as in the following table.
Finally, the colors of Stones 1, 2, 3, 4, 5, 6 will be 1, 1, 1, 2, 2, 2, respectively.
This sample input satisfies the constraints of Subtasks 1, 3.
Sample 2
This sample input satisfies the constraints of all the subtasks.
Constraints
- 1 ≤ N ≤ 2 × 1 0 5 1 \le N \le 2\times 10^5 1≤N≤2×105.
- 1 ≤ A i ≤ 1 0 9 1 \le A_i \le 10^9 1≤Ai≤109 ( 1 ≤ i ≤ N 1 \le i \le N 1≤i≤N).
- Given values are all integers.
Subtasks
- (25 points) N ≤ 2000 N \le 2 000 N≤2000.
- (35 points) A i ≤ 2 A_i \le 2 Ai≤2 ( 1 ≤ i ≤ N 1 \le i \le N 1≤i≤N).
- (40 points) No additional constraints.
线段树
以下两个变量记录所有已经排列,且不属于任意a[j…i-1]的棋子。
unordered_map<int, vector> mColorIndexs; 键是颜色,值是下标,升序。
set inxs;下标。
线段树记录修改状态。
代码
核心代码
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>
#include <bitset>
using namespace std;
template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
in >> pr.first >> pr.second;
return in;
}
template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t);
return in;
}
template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
return in;
}
template<class T = int>
vector<T> Read() {
int n;
scanf("%d", &n);
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<int N = 12 * 1'000'000>
class COutBuff
{
public:
COutBuff() {
m_p = puffer;
}
template<class T>
void write(T x) {
int num[28], sp = 0;
if (x < 0)
*m_p++ = '-', x = -x;
if (!x)
*m_p++ = 48;
while (x)
num[++sp] = x % 10, x /= 10;
while (sp)
*m_p++ = num[sp--] + 48;
}
inline void write(char ch)
{
*m_p++ = ch;
}
inline void ToFile() {
fwrite(puffer, 1, m_p - puffer, stdout);
}
private:
char puffer[N], * m_p;
};
template<int N = 12 * 1'000'000>
class CInBuff
{
public:
inline CInBuff() {
fread(buffer, 1, N, stdin);
}
inline int Read() {
int x(0), f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
return f ? -x : x;
}
private:
char buffer[N], * S = buffer;
};
template<class TSave, class TRecord >
class CRangUpdateLineTree
{
protected:
virtual void OnQuery(TSave& ans, const TSave& save, const int& iSaveLeft, const int& iSaveRight) = 0;
virtual void OnUpdate(TSave& save, const int& iSaveLeft, const int& iSaveRight, const TRecord& update) = 0;
virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, const int& iSaveLeft, const int& iSaveRight) = 0;
virtual void OnUpdateRecord(TRecord& old, const TRecord& newRecord) = 0;
};
template<class TSave, class TRecord >
class CVectorRangeUpdateLineTree : public CRangUpdateLineTree<TSave, TRecord>
{
public:
CVectorRangeUpdateLineTree(int iEleSize, TSave tDefault, TRecord tRecordNull) :m_iEleSize(iEleSize), m_tDefault(tDefault)
, m_save(iEleSize * 4, tDefault), m_record(iEleSize * 4, tRecordNull) {
m_recordNull = tRecordNull;
}
void Update(int iLeftIndex, int iRightIndex, TRecord value)
{
Update(1, 0, m_iEleSize - 1, iLeftIndex, iRightIndex, value);
}
TSave Query(int leftIndex, int rightIndex) {
return Query(leftIndex, rightIndex, m_tDefault);
}
TSave Query(int leftIndex, int rightIndex, const TSave& tDefault) {
TSave ans = tDefault;
Query(ans, 1, 0, m_iEleSize - 1, leftIndex, rightIndex);
return ans;
}
//void Init() {
// Init(1, 0, m_iEleSize - 1);
//}
TSave QueryAll() {
return m_save[1];
}
void swap(CVectorRangeUpdateLineTree<TSave, TRecord>& other) {
m_save.swap(other.m_save);
m_record.swap(other.m_record);
std::swap(m_recordNull, other.m_recordNull);
assert(m_iEleSize == other.m_iEleSize);
}
protected:
//void Init(int iNodeNO, int iSaveLeft, int iSaveRight)
//{
// if (iSaveLeft == iSaveRight) {
// this->OnInit(m_save[iNodeNO], iSaveLeft);
// return;
// }
// const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
// Init(iNodeNO * 2, iSaveLeft, mid);
// Init(iNodeNO * 2 + 1, mid + 1, iSaveRight);
// this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO * 2], m_save[iNodeNO * 2 + 1], iSaveLeft, iSaveRight);
//}
void Query(TSave& ans, int iNodeNO, int iSaveLeft, int iSaveRight, int iQueryLeft, int iQueryRight) {
if ((iSaveLeft >= iQueryLeft) && (iSaveRight <= iQueryRight)) {
this->OnQuery(ans, m_save[iNodeNO], iSaveLeft, iSaveRight);
return;
}
if (iSaveLeft == iSaveRight) {//没有子节点
return;
}
Fresh(iNodeNO, iSaveLeft, iSaveRight);
const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
if (mid >= iQueryLeft) {
Query(ans, iNodeNO * 2, iSaveLeft, mid, iQueryLeft, iQueryRight);
}
if (mid + 1 <= iQueryRight) {
Query(ans, iNodeNO * 2 + 1, mid + 1, iSaveRight, iQueryLeft, iQueryRight);
}
}
void Update(int iNode, int iSaveLeft, int iSaveRight, int iOpeLeft, int iOpeRight, TRecord value)
{
if ((iOpeLeft <= iSaveLeft) && (iOpeRight >= iSaveRight))
{
this->OnUpdate(m_save[iNode], iSaveLeft, iSaveRight, value);
this->OnUpdateRecord(m_record[iNode], value);
return;
}
if (iSaveLeft == iSaveRight) {
return;//没有子节点
}
Fresh(iNode, iSaveLeft, iSaveRight);
const int iMid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
if (iMid >= iOpeLeft)
{
Update(iNode * 2, iSaveLeft, iMid, iOpeLeft, iOpeRight, value);
}
if (iMid + 1 <= iOpeRight)
{
Update(iNode * 2 + 1, iMid + 1, iSaveRight, iOpeLeft, iOpeRight, value);
}
// 如果有后代,至少两个后代
this->OnUpdateParent(m_save[iNode], m_save[iNode * 2], m_save[iNode * 2 + 1], iSaveLeft, iSaveRight);
}
void Fresh(int iNode, int iDataLeft, int iDataRight)
{
if (m_recordNull == m_record[iNode])
{
return;
}
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
Update(iNode * 2, iDataLeft, iMid, iDataLeft, iMid, m_record[iNode]);
Update(iNode * 2 + 1, iMid + 1, iDataRight, iMid + 1, iDataRight, m_record[iNode]);
m_record[iNode] = m_recordNull;
}
vector<TSave> m_save;
vector<TRecord> m_record;
TRecord m_recordNull;
TSave m_tDefault;
const int m_iEleSize;
};
template<class TSave, class TRecord >
class CSetMaxLineTree : public CVectorRangeUpdateLineTree<TSave, TRecord>
{
public:
using CVectorRangeUpdateLineTree<TSave, TRecord>::CVectorRangeUpdateLineTree;
protected:
virtual void OnQuery(TSave& ans, const TSave& save, const int& iSaveLeft, const int& iSaveRight) {
ans = max(ans, save);
}
virtual void OnUpdate(TSave& save, const int& iSaveLeft, const int& iSaveRight, const TRecord& update) {
save = update;
}
virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, const int& iSaveLeft, const int& iSaveRight) {
par = max(left, r);
}
virtual void OnUpdateRecord(TRecord& old, const TRecord& newRecord)
{
old = newRecord;
}
};
class Solution {
public:
vector<int> Ans(const vector<int>& a) {
const int N = a.size();
CSetMaxLineTree<int, int> lineTree(N, 0, 0);
set<int> inxs;
unordered_map<int, vector<int>> mColorIndexs;
for (int i = 0; i < N; i++) {
int j = i;
if (mColorIndexs.count(a[i]) && mColorIndexs[a[i]].size()) {
j = mColorIndexs[a[i]].back();
};
for (auto it = inxs.lower_bound(i);;) {
if (inxs.begin() == it) { break; }
--it;
if (*it < j) { break; }
mColorIndexs[a[*it]].pop_back();
}
inxs.erase(inxs.lower_bound(j), inxs.lower_bound(i));
inxs.emplace(i);
mColorIndexs[a[i]].emplace_back(i);
lineTree.Update(j, i, a[i]);
}
vector<int> ans;
for (int i = 0; i < N; i++) {
ans.emplace_back(lineTree.Query(i, i));
}
return ans;
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
auto a = Read<int>();
auto res = Solution().Ans(a);
for (const auto& i : res) {
cout << i << endl;
}
cout << endl;
#ifdef _DEBUG
/*printf("T=%d,", T);*/
Out(a, "a=");
#endif // DEBUG
return 0;
}
单元测试
vector<int> a;
TEST_METHOD(TestMethod11)
{
a = {1,2};
auto res = Solution().Ans(a);
AssertV({1,2}, res);
}
TEST_METHOD(TestMethod12)
{
a = { 1,2 ,1};
auto res = Solution().Ans(a);
AssertV({ 1,1,1 }, res);
}
TEST_METHOD(TestMethod13)
{
a = { 4,1,2,3,2,1 };
auto res = Solution().Ans(a);
AssertV({4,1,1, 1,1,1 }, res);
}
TEST_METHOD(TestMethod14)
{
a = { 1,2,1,2,3,2 };
auto res = Solution().Ans(a);
AssertV({ 1,1,1,2,2,2 }, res);
}
TEST_METHOD(TestMethod15)
{
a = { 1,1,2,2,1,2,2,1,1,2 };
auto res = Solution().Ans(a);
AssertV({ 1,1,1,1,1,1,1,1,1,2 }, res);
}
不用线段树
在inxs中存在的下标,颜色是原色,不存在的颜色就是inxs存在的后一个下标的颜色。
即:a[i] = *inxs.lower(i);
class Solution {
public:
vector<int> Ans(const vector<int>& a) {
const int N = a.size();
set<int> inxs;
unordered_map<int, vector<int>> mColorIndexs;
for (int i = 0; i < N; i++) {
int j = i;
if (mColorIndexs.count(a[i]) && mColorIndexs[a[i]].size()) {
j = mColorIndexs[a[i]].back();
};
for (auto it = inxs.lower_bound(i);;) {
if (inxs.begin() == it) { break; }
--it;
if (*it < j) { break; }
mColorIndexs[a[*it]].pop_back();
}
inxs.erase(inxs.lower_bound(j), inxs.lower_bound(i));
inxs.emplace(i);
mColorIndexs[a[i]].emplace_back(i); ;
}
vector<int> ans;
for (int i = 0; i < N; i++) {
ans.emplace_back(a[*inxs.lower_bound(i)]);
}
return ans;
}
};
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。