neo4j图数据库基本概念和向量使用

news2025/5/10 22:24:15

一.节点

1.新建节点

create (n:GroupProduct {name:'都邦高保额团意险',description: "保险产品名称"} ) return n

CREATE:Neo4j 的关键字,用于创建新节点或关系。


(n:GroupProduct):
n 是节点的临时别名(变量名),方便在return中引用,创建完成之后就没用了。


GroupProduct 是节点的标签(Label),用于分类节点(如 Person, Product 等)。


{name:'都邦高保额团意险',description: "保险产品名称"}
节点的属性(Properties),键值对形式:


RETURN n:
返回新创建的节点 n,用于验证操作是否成功。

2.已有节点创建关系

MATCH (a:GroupProductA {name:'保高空'}), (b:GroupProduct {name:'都邦高保额团意险'})
CREATE (a)-[:INCLUDE {restrict: "涉电及高空作业按6类可承保"}]->(b)

变量名可以随意定义,只要能区分出来两个节点的区别,简短有意义

关系名称INCLUDE: 也可以随意定义,最好是能够见名知意,最好定义统一的团队规范

关系也可以添加属性: 比如表明这个关系有什么限制条件

使用箭头 -> 表示从左到右的关系方向

3.删除节点

MATCH (n:GroupProductA {name:'保高空' })
DETACH DELETE n

4.查询节点之间的相邻节点

MATCH (startNode {属性名: 值})-[:关系类型*..N]-(relatedNode)
RETURN startNode, relatedNode

例如:

MATCH (a {name: "保高空"})-[*..1]-(b)
RETURN a,b

关键参数说明
参数说明示例
*表示遍历任意深度的关系(包括直接关联和间接关联)。-[*] 表示所有层级关联。
*..N最大遍历深度。例如 *..2 表示遍历 1 层或 2 层关联。-[:EXCLUDES*..2] 最多找两跳关联。
-[]->单向遍历(从左到右)。(a)-[:PARENT_OF]->(b) 只找 a 的子节点。
<-[]-反向遍历(从右到左)。(a)<-[:CHILD_OF]-(b) 找到 b 的父节点。

 注意事项

性能问题:遍历深度(如 *..N)越大,查询耗时越长,建议根据需求限制深度。
方向性:若关系是单向的(如 EXCLUDES),需注意方向(如 ()-[:EXCLUDES]->())。

属性唯一性:确保查询的属性(如 product_id)是唯一标识符,否则可能返回多个节点。


5.对已创建好的节点添加属性

MATCH (a:GroupProductA {name:'保高空' })
SET a+= { embedding: [] }
RETURN b;

二.节点向量存储和检索

1.节点需要添加向量数组

可以选择一开添加节点的时候加一个向量属性

create (n:GroupProductA {name:'保高空',description: "保险产品可以保高空作业",embedding: [向量的具体值]}) return n

或者后续添加

MATCH (a:GroupProductA {name:'保高空' })
SET a+= { embedding: [向量具体数值] }
RETURN b;

2.给节点增加向量索引

CREATE VECTOR INDEX 索引名称 IF NOT EXISTS
FOR (具体的节点标签)
ON n.embedding
OPTIONS { indexConfig: {
 `vector.dimensions`: 向量维度数值,
 `vector.similarity_function`: 向量计算方法
}}

例如:

CREATE VECTOR INDEX HighDutyIdx IF NOT EXISTS
FOR (n:HighDuty)
ON n.embedding
OPTIONS { indexConfig: {
 `vector.dimensions`: 1536,
 `vector.similarity_function`: 'cosine'
}}

3.计算向量余弦相似度

MATCH (a:GroupProductA)
WHERE a.embedding IS NOT NULL
WITH n,
     // 计算向量余弦相似度或欧氏距离
     vector.similarity.cosine(n.embedding, [0.1, 0.2, ...]) AS similarity
RETURN n.name, similarity
ORDER BY similarity DESC
LIMIT 10;

4.查询两个节点的向量相似度


MATCH (a:GroupProductA {name: '保高空'})
MATCH (b:GroupProductA {name:'团意'})
RETURN vector.similarity.cosine(a.embedding, b.embedding)

5.查询所有向量索引


SHOW VECTOR INDEXES

6.删除指定向量索引


DROP INDEX moviePlots

三.RAG向量检索最佳实践

1.先查询出所有符合的向量节点,有个阈值,比如大于0.8的查询出所有符合的节点

2.然后再通过这些符合的节点,根据节点之间的关系,找到想要查询出来的节点属性

3.根据查询出来的节点属性和用户问题,给大模型总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2372664.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

修复笔记:获取 torch._dynamo 的详细日志信息

一、问题描述 在运行项目时&#xff0c;遇到与 torch._dynamo 相关的报错&#xff0c;并且希望获取更详细的日志信息以便于进一步诊断问题。 二、相关环境变量设置 通过设置环境变量&#xff0c;可以获得更详细的日志信息&#xff1a; set TORCH_LOGSdynamo set TORCHDYNAM…

Windows平台下的Qt发布版程序打包成exe可执行文件(带图标)|Qt|C++

首先先找一个可执行文件的图标 可以去阿里的矢量图库里找 iconfont-阿里巴巴矢量图标库 找到想要的图标下载下来 此时的图标是png格式的&#xff0c;我们要转到icon格式的文件 要使用到一个工具Drop Icons_2.1.1.rar - 蓝奏云 生成icon文件后把icon文件放到你项目的根目录下…

CSS--图片链接垂直居中展示的方法

原文网址&#xff1a;CSS--图片链接垂直居中展示的方法-CSDN博客 简介 本文介绍CSS图片链接垂直居中展示的方法。 图片链接 问题复现 源码 <html xml:lang"cn" lang"cn"><head><meta http-equiv"Content-Type" content&quo…

TRAE 配置blender MCP AI自动3D建模

BlenderMCP - Blender模型上下文协议集成 BlenderMCP通过模型上下文协议(MCP)将Blender连接到Claude AI&#xff0c;允许Claude直接与Blender交互并控制Blender。这种集成实现了即时辅助的3D建模、场景创建和操纵。 1.第一步下载 MCP插件(addon.py):Blender插件&#xff0c;在…

VUE2课程计划表练习

主要练习数据变量对象 以下是修正后的完整代码&#xff1a; //javascript export default {data() {return {list: [{ id: 1, subject: Vue.js 前端实战开发, content: 学习指令&#xff0c;例如 v-if、v-for、v-model 等, place: 自习室, status: false }// 可以在这里添加更…

2025年软件工程与数据挖掘国际会议(SEDM 2025)

2025 International Conference on Software Engineering and Data Mining 一、大会信息 会议简称&#xff1a;SEDM 2025 大会地点&#xff1a;中国太原 收录检索&#xff1a;提交Ei Compendex,CPCI,CNKI,Google Scholar等 二、会议简介 2025年软件开发与数据挖掘国际会议于…

.NET高频技术点(持续更新中)

1. .NET 框架概述 .NET 框架的发展历程.NET Core 与 .NET Framework 的区别.NET 5 及后续版本的统一平台 2. C# 语言特性 异步编程&#xff08;async/await&#xff09;LINQ&#xff08;Language Integrated Query&#xff09;泛型与集合委托与事件属性与索引器 3. ASP.NET…

pandas中的数据聚合函数:`pivot_table` 和 `groupby`有啥不同?

pivot_table 和 groupby 是 pandas 中两种常用的数据聚合方法&#xff0c;它们都能实现数据分组和汇总&#xff0c;但在使用方式和输出结构上有显著区别。 0. 基本介绍 groupby分组聚合 groupby 是 Pandas 库中的一个功能强大的方法&#xff0c;用于根据一个或多个列对数据进…

对golang中CSP的理解

概念&#xff1a; CSP模型&#xff0c;即通信顺序进程模型&#xff0c;是由英国计算机科学家C.A.R. Hoare于1978年提出的。该模型强调进程之间通过通道&#xff08;channel&#xff09;进行通信&#xff0c;并通过消息传递来协调并发执行的进程。CSP模型的核心思想是“不要通过…

【LunarVim】CMake LSP配置

在 LunarVim 中为 CMakeLists.txt 文件启用代码提示&#xff08;如补全和语义高亮&#xff09;&#xff0c;需要安装支持 CMake 的 LSP&#xff08;语言服务器&#xff09;和适当的插件。以下是完整配置指南&#xff1a; 1、配置流程 1.1 安装cmake-language-server 通过 Ma…

Mkdocs页面如何嵌入PDF

嵌入PDF 嵌入PDF代码 &#xff0c;注意PDF的相对地址 <iframe src"../个人简历.pdf (相对地址)" width"100%" height"800px" style"border: 1px solid #ccc; overflow: auto;"></iframe>我的完整代码&#xff1a; <d…

融合静态图与动态智能:重构下一代智能系统架构

引言&#xff1a;智能系统的分裂 当前的大模型系统架构正处于两个极端之间&#xff1a; 动态智能体系统&#xff1a;依赖语言模型动态决策、自由组合任务&#xff0c;智能灵活但稳定性差&#xff1b; 静态流程图系统&#xff1a;具备强工程能力&#xff0c;可控可靠&#xf…

WORD压缩两个免费方法

日常办公和学习中&#xff0c;Word文档常常因为包含大量图片、图表或复杂格式而导致文件体积过大&#xff0c;带来诸多不便&#xff0c;比如 邮件发送受限&#xff1a;许多邮箱附件限制在10-25MB&#xff0c;大文件无法直接发送 存储空间占用&#xff1a;大量文档占用硬盘或云…

skywalking服务安装与启动

skywalking服务安装并启动 1、介绍2、下载apache-skywalking-apm3、解压缩文件4、创建数据库及用户5、修改配置文件6、下载 MySQL JDBC 驱动7、启动 OAP Serve,需要jkd11,需指定jkd版本,可以修改文件oapService.sh8、启动 Web UI,需要jkd11,需指定jkd版本,可以修改文件oapServi…

Qt 中信号与槽(signal-slot)机制支持 多种连接方式(ConnectionType)

Qt 中信号与槽&#xff08;signal-slot&#xff09;机制支持 多种连接方式&#xff08;ConnectionType&#xff09; Qt 中信号与槽&#xff08;signal-slot&#xff09;机制支持 多种连接方式&#xff08;ConnectionType&#xff09;&#xff0c;用于控制信号发出后如何调用槽…

Midjourney-V7:支持参考图片头像或背景生成新保真图

Midjourney-V7重磅升级Omni Reference&#xff1a;全能图像参考神器&#xff01;再也不用担心生成图片货不对版了&#xff01; 就在上周&#xff0c;Midjourney发版它最新的V7版本&#xff1a;Omini Reference&#xff0c;提供了全方位图像参考功能&#xff0c;它可以参考你提…

耀圣-气动带刮刀硬密封法兰球阀:攻克颗粒高粘度介质的自清洁 “利器”

气动带刮刀硬密封法兰球阀&#xff1a;攻克颗粒高粘度介质的自清洁 “利器” 在化工、矿业、食品加工等行业中&#xff0c;带颗粒高粘度介质、料浆及高腐蚀性介质的输送与控制一直是行业难题。普通阀门极易因介质附着、颗粒堆积导致卡阻失效&#xff0c;密封面磨损加剧&#x…

Google云计算原理和应用之分布式锁服务Chubby

Chubby是Google设计的提供粗粒度锁服务的一个文件系统,它基于松耦合分布式系统,解决了分布的一致性问题。通过使用Chubby的锁服务,用户可以确保数据操作过程中的一致性。不过值得注意的是,这种锁只是一种建议性的锁(Advisory Lock)而不是强制性的锁,这种选择系统具有更大…

SM2Utils NoSuchMethodError: org.bouncycastle.math.ec.ECFieldElement$Fp.<init

1&#xff0c;报错图示 2&#xff0c;报错原因&#xff1a; NoSuchMethodError 表示运行时找不到某个方法&#xff0c;通常是编译时依赖的库版本与运行时使用的库版本不一致。 错误中的 ECFieldElement$Fp. 构造函数参数为 (BigInteger, BigInteger)&#xff0c;说明代码期望使…

《100天精通Python——基础篇 2025 第16天:异常处理与调试机制详解》

目录 一、认识异常1.1 为什么要使用异常处理机制?1.2 语法错误1.3 异常错误1.4 如何解读错误信息 二、异常处理2.1 异常的捕获2.2 Python内置异常2.3 捕获多个异常2.4 raise语句与as子句2.5 使用traceback查看异常2.6 try…except…else语句2.7 try…except…finally语句--捕获…