MATLAB图像处理:图像分割方法

news2025/5/21 18:11:19

图像分割将图像划分为具有特定意义的子区域,是目标检测、医学影像分析、自动驾驶等领域的核心预处理步骤。本文讲解阈值分割、边缘检测、区域生长、聚类分割、基于图的方法等经典与前沿技术,提供MATLAB代码实现。

目录

1. 图像分割基础

2. 经典分割方法详解

2.1 阈值分割

原理:

MATLAB实现:

2.2 边缘检测分割

原理:

2.3 区域生长与分裂合并

算法步骤:

4. 分割方法对比与选型指南


1. 图像分割基础

  • 定义:根据像素的灰度、纹理、颜色或语义特征,将图像划分为互不重叠的区域。
  • 核心目标
    • 精确分离目标与背景
    • 保留目标的几何与语义完整性

2. 经典分割方法详解

2.1 阈值分割
原理
  • 通过设定灰度阈值划分前景与背景,适用于高对比度场景。
  • OTSU算法:自动计算最大类间方差的阈值。
MATLAB实现
img = imread('coins.png');

% 手动阈值分割
thresh = 0.6;                 % 阈值设为0.6(归一化后)
binary_manual = imbinarize(img, thresh);

% OTSU自动阈值
thresh_otsu = graythresh(img); 
binary_otsu = imbinarize(img, thresh_otsu);

figure;
subplot(131), imshow(img), title('原图');
subplot(132), imshow(binary_manual), title('手动阈值');
subplot(133), imshow(binary_otsu), title('OTSU分割');
2.2 边缘检测分割

原理
  • 基于梯度、二阶导数或零交叉检测目标轮廓(如Canny、Sobel算法)。

% Canny边缘检测
edge_canny = edge(img, 'Canny', [0.1 0.25], 1.5);

% 形态学后处理连接断裂边缘
se = strel('disk', 2);
closed_edge = imclose(edge_canny, se);
filled_edge = imfill(closed_edge, 'holes');

figure;
subplot(131), imshow(edge_canny), title('Canny边缘');
subplot(132), imshow(closed_edge), title('闭运算连接');
subplot(133), imshow(filled_edge), title('填充孔洞');

2.3 区域生长与分裂合并
算法步骤
  1. 区域生长:从种子点出发,按相似性准则合并相邻像素。
  2. 分裂合并:递归地将图像分裂为子块,合并相似区块。
% 初始化生长区域
segmented = false(size(img));
segmented(seed_point(1), seed_point(2)) = true;
mean_val = img(seed_point(1), seed_point(2));

% 迭代生长
for iter = 1:1000
    neighbor_mask = imdilate(segmented, strel('disk',1)) & ~segmented;
    neighbors = find(neighbor_mask);
    if isempty(neighbors), break; end
    neighbor_vals = img(neighbors);
    valid = abs(neighbor_vals - mean_val) < threshold;
    segmented(neighbors(valid)) = true;
    mean_val = mean(img(segmented));
end

figure; 
imshowpair(img, segmented, 'blend'), title('区域生长结果');

 3. 聚类与图论分割方法

3.1 K-means聚类分割

clc;
clear;
close all;

% 读取图像
originalImage = imread('苹果.png'); % 使用MATLAB自带图像
figure; 
imshow(originalImage); 
title('原始图像');

%% 预处理
img = im2double(originalImage); % 转换为双精度并归一化
[rows, cols, channels] = size(img);

% 转换为像素特征向量(每个像素的RGB值作为特征)
pixelFeatures = reshape(img, rows*cols, channels); % 尺寸变为[M*N, 3]

%% K均值聚类
k = 2; % 设置聚类数量
[clusterIdx, centroids] = kmeans(pixelFeatures, k, ...
    'Distance', 'sqeuclidean', ...   % 平方欧氏距离
    'Replicates', 5, ...             % 重复聚类5次取最佳
    'MaxIter', 100);                % 最大迭代次数

%% 后处理与可视化
% 将聚类结果重塑回图像尺寸
labelMap = reshape(clusterIdx, rows, cols);

% 创建颜色标记的分割图像
segmentedImage = zeros(rows, cols, channels);
for i = 1:k
    % 为每个聚类区域赋予对应的中心颜色
    mask = labelMap == i;
    for ch = 1:channels
        colorLayer = img(:,:,ch);
        segmentedImage(:,:,ch) = segmentedImage(:,:,ch) + ...
                                 colorLayer .* mask;
    end
end

figure;
imshow(segmentedImage);
title('聚类颜色增强分割结果');

%% 显示每个聚类区域(二值显示)
figure;
for i = 1:k
    subplot(1,k,i);
    imshow(labelMap == i);
    title(['聚类区域 ', num2str(i)]);
end

%% 高级可视化:叠加边界到原图
boundaries = zeros(rows, cols);
for i = 1:k
    mask = labelMap == i;
    boundaries = boundaries + edge(mask, 'canny');
end

figure;
imshow(imoverlay(originalImage, boundaries, [1 0 0])); % 红色显示边界
title('带分割边界的原图');

 3.2 图割(Graph Cut)

rgb_img = imread('苹果.png');
lab_img = rgb2lab(rgb_img);  % 转为Lab色彩空间提升聚类效果
% 使用Image Processing Toolbox的graphcut函数
mask = false(size(rgb_img,1), size(rgb_img,2));
mask(50:end-50, 50:end-50) = true;  % 粗略定义前景区域

L = superpixels(rgb_img, 500);       % 生成超像素
BW = lazysnapping(rgb_img, L, mask, ~mask);  % 图割优化

figure;
imshowpair(rgb_img, BW, 'blend'), title('图割分割结果');

4. 分割方法对比与选型指南

方法优点缺点适用场景
阈值分割计算快、易于实现依赖对比度,难以处理复杂纹理文档扫描、简单目标提取
边缘检测精准边界定位易受噪声干扰,需后处理工业零件尺寸测量
区域生长适合均匀区域依赖种子点选择,速度慢医学肿瘤分割
K-means聚类无需先验知识色彩空间敏感,可能过分割自然图像颜色分割
图割全局优化,精度高计算资源消耗大交互式图像编辑

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2302224.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【VSCode】MicroPython环境配置

【VSCode】MicroPython环境配置 RT-Thread MicroPython 插件安装MicroPython 库文件配置结束语 RT-Thread MicroPython 插件安装 在 VSCode 拓展中搜索 “RT-Thread MicroPython” 并安装&#xff0c;详细配置步骤&#xff08;修改 VSCode 默认终端、MicroPython 代码补全&…

【python】网页批量转PDF

安装wkhtmltopdf 网站&#xff1a;wkhtmltopdf wkhtmltopdf http://www.baidu.com/ D:website1.pdf 安装pdfkit库 pip install pdfkit 批量转换代码 import os import pdfkit path_wkthmltopdf rE:\Program Files\wkhtmltopdf\bin\wkhtmltopdf.exe config pdfkit.configu…

基于Flask的租房信息可视化系统的设计与实现

【Flask】基于Flask的租房信息可视化系统的设计与实现&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 随着互联网的快速发展&#xff0c;租房市场日益繁荣&#xff0c;信息量急剧增加&#xff…

Scrapy安装,创建Scrapy项目,启动Scrapy爬虫

Scrapy安装&#xff0c;创建Scrapy项目&#xff0c;启动Scrapy爬虫 1. 安装 Python2. 安装 Scrapy3. 验证安装4. 创建 Scrapy 项目5. 启动爬虫5.1 示例 总结 Scrapy 的安装方式比较简单&#xff0c;下面是基于 Python 环境的安装流程&#xff1a; 1. 安装 Python 首先&#x…

C++项目:高并发内存池_上

目录 1. 项目介绍 2. 内存池概念 2.1 池化技术 2.2 内存池和内存碎片 2.3 细看malloc 3. 定长内存池的实现 ObjectPool.hpp 4. 高并发内存池框架 5. thread cache测试 5.1 thread cache框架 5.2 ConcurrentAlloc.hpp 6. central cache测试 6.1 central cache框架 …

手机控制电脑远程关机

远程看看软件兼容iOS和Android设备&#xff0c;该软件除了能通过电脑远程关闭另一台电脑外&#xff0c;您还可以通过它在手机上远程关闭公司的电脑。您可以按照以下步骤进行操作以实现电脑远程关机&#xff1a; 步骤1.在手机应用商店搜索“远程看看”进行软件安装&#xff0c;…

IO模型与NIO基础--NIO网络传输选择器--字符编码

放进NIO体系进行网络编程的工作流程&#xff1a; Selector的创建 通过调用Selector.open()方法创建一个Selector&#xff0c;如下&#xff1a; Selector selector Selector.open(); 向Selector注册通道 通过Channel.register()方法来实现&#xff0c; 注意&#xff1a;Chan…

【亚马逊开发者账号02】终审问题SA+review_Pre-review+Doc.xlsx

1.终审问题 你好感谢您在此过程中的回复和协作。所有想要构建具有受限 SP-API 角色的公开可用应用程序的开发人员都必须与我们的解决方案架构师团队一起完成架构审核。 这将需要详细说明应用程序的数据流、个人身份信息 &#xff08;PII&#xff09; 的数据保护控制&#xff0…

c++标准io与线程,互斥锁

封装一个 File 类&#xff0c; 用有私有成员 File* fp 实现以下功能 File f "文件名" 要求打开该文件 f.write(string str) 要求将str数据写入文件中 string str f.read(int size) 从文件中读取最多size个字节&#xff0c; 并将读取到的数据返回 析构函数 #…

在高流量下保持WordPress网站的稳定和高效运行

随着流量的不断增加&#xff0c;网站的稳定和高效运行变得越来越重要&#xff0c;特别是使用WordPress搭建的网站。流量过高时&#xff0c;网站加载可能会变慢&#xff0c;甚至崩溃&#xff0c;直接影响用户体验和网站正常运营。因此&#xff0c;我们需要采取一些有效的措施&am…

Cython学习笔记1:利用Cython加速Python运行速度

Cython学习笔记1&#xff1a;利用Cython加速Python运行速度 CythonCython 的核心特点&#xff1a;利用Cython加速Python运行速度1. Cython加速Python运行速度原理2. 不使用Cython3. 使用Cython加速&#xff08;1&#xff09;使用pip安装 cython 和 setuptools 库&#xff08;2&…

web的分离不分离:前后端分离与不分离全面分析

让我们一起走向未来 &#x1f393;作者简介&#xff1a;全栈领域优质创作者 &#x1f310;个人主页&#xff1a;百锦再新空间代码工作室 &#x1f4de;工作室&#xff1a;新空间代码工作室&#xff08;提供各种软件服务&#xff09; &#x1f48c;个人邮箱&#xff1a;[1504566…

记录一个ES分词器不生效的解决过程

问题背景 商城项目,其中商品查询检索使用的是ES, 但存在某些商品查询不到的问题 例如:某商品名包含AA_BBB这样的关键词,但是搜索"AA"不能查询到该商品,但是将商品名修改为AA BBB后就能查询到了. 怀疑是分词的问题,但看代码,在创建ES索引时在对应字段上也定义了分词器…

高性能内存对象缓存Memcached详细实验操作

目录 前提准备&#xff1a; cache1&#xff0c;2&#xff1a; 客户端cache-api&#xff08;一定得是LAMP环境&#xff09; memcache实现主主复制以及高可用(基于以上完成) cache1,2: memcachekeepalived(基于以上完成) cache1,2: 前提准备&#xff1a; 1. 准备三台cent…

css之display:grid布局改块级元素布局

1.问题&#xff1a; div是块级元素&#xff0c;一个div元素占一行&#xff0c;但是&#xff0c;今天测试样式时&#xff0c;总是会有两个div并占一行&#xff0c;很困惑&#xff0c;结果发现是app这个样式 在main.css里 #app样式布局在main.ts里被应用 2.原因以及样式分析 im…

推荐一个github star45k+进阶的java项目及知识的网站

mall是github上star 45k的一个java项目 mall项目是一套电商系统&#xff0c;包括前台商城系统及后台管理系统&#xff0c;基于SpringBootMyBatis实现&#xff0c;采用Docker容器化部署。 前台商城系统包含首页门户、商品推荐、商品搜索、商品展示、购物车、订单流程、会员中心…

第2章 深入理解Thread构造函数

Thread的构造函数。 2.1 线程的命名 在构造一个Thread时可以为其命名。 2.1.1 线程的默认命名 下面构造函数中&#xff0c;并没有为线程命名。 Thread() Thread(Runnable target) Thread(ThreadGroup group, Runnable target)打开源码会看到 public Thread(Runnable targe…

node 使用 Redis 缓存

缓存是什么&#xff1f; 高并发下&#xff0c;一个项目最先出问题的&#xff0c;并不是程序本身&#xff0c;而是数据库最先承受不住。 在数据库上我们可以做很多优化&#xff0c;例如优化 SQL 语句&#xff0c;优化索引&#xff0c;如果数据量大了&#xff0c;还可以分库、分表…

PMBOK第7版整体架构全面详解

1. 引言 7月1日对于项目管理从业者和研究者而言&#xff0c;是个非凡意义的一个时间&#xff0c;这一天&#xff0c;翘首以待的《 项 目管理知识体系指南 》&#xff08;PMBOK&#xff09;第七版终于发布了。 总体而言&#xff0c;PMBOK第七版集百家之所长&#xff0c;成一…

【Scrapy】Scrapy教程6——提取数据

前一小节我们拿到了页面的数据,那页面中那么多内容,我们想要其中的部分内容,该如何获取呢?这就需要对我们下载到的数据进行解析,提取出来想要的数据,这节就讲讲如何提取数据。 引入 我们编辑保存下来的shouye.html文件看下,发现这是什么鬼,全是如下图的代码。 没错…