最新智能优化算法: 阿尔法进化(Alpha Evolution,AE)算法求解23个经典函数测试集,MATLAB代码

news2025/5/19 17:03:17

一、阿尔法进化算法

阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。以下是AE算法的主要步骤和特点:
在这里插入图片描述

主要步骤
初始化:在搜索空间中随机生成一组候选解,并评估其质量。
Alpha算子:通过采样候选解构建进化矩阵,并通过矩阵的对角线或加权操作估计种群状态。为了增强每一代估计的相关性,设计了两个进化路径来积累估计结果并实现基向量的自适应。
自适应步长:通过复合差分操作构建自适应步长,用于估计问题的梯度,从而加速AE的收敛。
随机步长:通过衰减因子α自适应调整基于搜索空间生成的随机步长,以平衡探索与开发。
边界约束与选择策略:使用“减半距离”方法确保解在搜索空间内,并通过贪婪选择策略将成功进化的解加入下一代。
在这里插入图片描述

特点
新颖的Alpha算子:AE算法仅使用一个Alpha算子来更新解,该算子实现了基向量的自适应,并集成了多种进化信息的提取和利用技术。
无特殊超参数:AE算法没有特殊的超参数,代码实现紧凑,易于理解和应用。
非隐喻算法:AE算法不依赖于隐喻,其数学模型直接呈现,避免了隐喻带来的复杂性。
快速收敛与高质量解:AE算法在多序列比对和工程设计问题中表现出快速收敛和高质量解的能力,具有广泛的应用前景。
AE算法通过其独特的Alpha算子和自适应机制,成功解决了传统进化算法中的诸多问题,在多个基准测试和实际应用中表现出色,证明了其在优化算法领域的重要价值。
参考文献:
[1]Gao H, Zhang Q. Alpha evolution: An efficient evolutionary algorithm with evolution path adaptation and matrix generation. Engineering Applications of Artificial Intelligence, 2024, 137: 109202.

二、23个函数介绍

在这里插入图片描述
参考文献:

[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、部分代码及结果

SearchAgents_no = 100;
Max_iter = 1000;
fn=12;
Function_name=strcat('F',num2str(fn));
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_score,Best_pos,PO_cg_curve]=(SearchAgents_no,Max_iter,lb,ub,dim,fobj);
semilogy(PO_cg_curve,'LineWidth',2)
title(Function_name)
xlabel('迭代次数');
ylabel('适应度值');

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

四、完整MATLAB代码见下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2300002.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【弹性计算】容器、裸金属

容器、裸金属 1.容器和云原生1.1 容器服务1.2 弹性容器实例1.3 函数计算 2.裸金属2.1 弹性裸金属服务器2.2 超级计算集群 1.容器和云原生 容器技术 起源于虚拟化技术,Docker 和虚拟机和谐共存,用户也找到了适合两者的应用场景,二者对比如下图…

【个人开发】deepspeed+Llama-factory 本地数据多卡Lora微调

文章目录 1.背景2.微调方式2.1 关键环境版本信息2.2 步骤2.2.1 下载llama-factory2.2.2 准备数据集2.2.3 微调模式2.2.3.1 zero-3微调2.2.3.2 zero-2微调2.2.3.3 单卡Lora微调 2.3 踩坑经验2.3.1 问题一:ValueError: Undefined dataset xxxx in dataset_info.json.2…

两步在 Vite 中配置 Tailwindcss

第一步:安装依赖 npm i -D tailwindcss tailwindcss/vite第二步:引入 tailwindcss 更改配置 // src/main.js import tailwindcss/index// vite.config.js import vue from vitejs/plugin-vue import tailwindcss from tailwindcss/viteexport default …

计算机视觉-尺度不变区域

一、尺度不变性 1.1 尺度不变性 找到一个函数,实现尺度的选择特性。 1.2 高斯偏导模版求边缘 1.3 高斯二阶导 用二阶过零点检测边缘 高斯二阶导有两个参数:方差和窗宽(给定方差可以算出窗宽) 当图像与二阶导高斯滤波核能匹配…

SNARKs 和 UTXO链的未来

1. 引言 SNARKs 经常被视为“解决”扩容问题的灵丹妙药。虽然 SNARKs 可以提供令人难以置信的好处,但也需要承认其局限性——SNARKs 无法解决区块链目前面临的现有带宽限制。 本文旨在通过对 SNARKs 对比特币能做什么和不能做什么进行(相对&#xff09…

DeepSeek 通过 API 对接第三方客户端 告别“服务器繁忙”

本文首发于只抄博客,欢迎点击原文链接了解更多内容。 前言 上一期分享了如何在本地部署 DeepSeek R1 模型,但通过命令行运行的本地模型,问答的交互也要使用命令行,体验并不是很好。这期分享几个第三方客户端,涵盖了桌…

性格测评小程序07用户登录

目录 1 创建登录页2 在首页检查登录状态3 搭建登录功能最终效果总结 小程序注册功能开发好了之后,就需要考虑登录的问题。首先要考虑谁作为首页,如果把登录页作为首页,比较简单,每次访问的时候都需要登录。 如果把功能页作为首页&…

deepseek多列数据对比,联想到excel的高级筛选功能

目录 1 业务背景 ​2 deepseek提示词输入 ​3 联想分析 4 EXCEL高级搜索 1 业务背景 系统上线的时候经常会遇到一个问题,系统导入的数据和线下的EXCEL数据是否一致,如果不一致,如何快速找到差异值,原来脑海第一反应就是使用公…

国产编辑器EverEdit - “切换文件类型”的使用场景

1 “切换文件类型”的使用场景 1.1 应用背景 一般的编辑器都是通过扩展名映射到对应的语法高亮规则的,比如:文件test.xml中的扩展名“xml"对应XML的语法高亮,在编辑器中打开test.xml就会给不同标识符显示不同的颜色。 但有时一些应用程…

在linux系统中安装Anaconda,并使用conda

系统 : ubuntu20.04 显卡:NVIDIA GTX1650 目录 安装Anaconda第一步:下载合适版本的Anconda1. 查看自己Linux的操作系统及架构命令:uname -a2. 下载合适版本的Anconda 第二步:安装Aanconda1. 为.sh文件设置权限2. 执行.sh文件2.1 .…

机械学习基础-5.分类-数据建模与机械智能课程自留

data modeling and machine intelligence - CLASSIFICATION 为什么我们不将回归技术用于分类?贝叶斯分类器(The Bayes Classifier)逻辑回归(Logistic Regression)对逻辑回归的更多直观理解逻辑 /sigmoid 函数的导数我们…

代码随想录刷题攻略---动态规划---子序列问题1---子序列

子序列(不连续)和子序列(连续)的问题 例题1: 最长递增子序列 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列是由数组派生而来的序列,删除(或不删除)数组中的…

OpenAI 放王炸,将发布整合多项技术的 GPT-5,并免费无限使用,该模型有哪些技术亮点

对于 ChatGPT 的免费用户,将可以无限制地访问 GPT-5,但仅限于标准的智能级别。该级别会设定滥用限制,以防止不当使用(意思就是你得付费嘛)。 OpenAI CEO Sam Altman 今天在 X 上透露了 GPT-4.5 和 GPT-5 的最新发展计划。 OpenAI 将发布代…

C 语言版--销售预测项目案例分享

以下是一个 C 语言销售预测项目案例,该项目模拟根据历史销售数据使用简单的移动平均法来预测未来的销售额。移动平均法是一种常见且基础的时间序列预测方法,它通过计算一定时间段内数据的平均值来预测未来的值。 项目需求 给定一系列历史销售数据,使用简单移动平均法预测下…

DC-7靶机渗透测试全过程

目录 前期准备 一、渗透测试 1.IP地址查询 2.端口地址收集 3.网页信息收集 社工收集信息 Drush直接修改账户密码 下载PHP插件 反弹shell 二、总结 前期准备 攻击机 : kali windows11 靶机: DC-7(调至NAT模式) 一、渗透测试 1.IP地址查询 …

什么是服务的雪崩、熔断、降级的解释以及Hystrix和Sentinel服务熔断器的解释、比较

1.什么是服务雪崩? 定义:在微服务中,假如一个或者多个服务出现故障,如果这时候,依赖的服务还在不断发起请求,或者重试,那么这些请求的压力会不断在下游堆积,导致下游服务的负载急剧…

解决IDEA报错:java 找不到符号

问题:IIDEA编译项目一直报 例如 java: 找不到符号 符号: 方法 getUserId()异常 的错误 解决方法: 1、刷新maven 2、clean package

基于SpringBoot的医院药房管理系统【源码+答辩PPT++项目部署】高质量论文1-1.5W字

作者简介:✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容:🌟Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…

Ubuntu22.04通过Docker部署Jeecgboot

程序发布环境包括docker、mysql、redis、maven、nodejs、npm等。 一、安装docker 1、用如下命令卸载旧Docker: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done 2、安装APT环境依赖包…

基于Ubuntu+vLLM+NVIDIA T4高效部署DeepSeek大模型实战指南

一、 前言:拥抱vLLM与T4显卡的强强联合 在探索人工智能的道路上,如何高效地部署和运行大型语言模型(LLMs)一直是一个核心挑战。尤其是当我们面对资源有限的环境时,这个问题变得更加突出。原始的DeepSeek-R1-32B模型虽…