代码随想录刷题攻略---动态规划---子序列问题1---子序列

news2025/5/20 8:41:05

子序列(不连续)和子序列(连续)的问题

例题1: 最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

  • 输入:nums = [10,9,2,5,3,7,101,18]
  • 输出:4
  • 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

  • 输入:nums = [0,1,0,3,2,3]
  • 输出:4

示例 3:

  • 输入:nums = [7,7,7,7,7,7,7]
  • 输出:1

提示:

  • 1 <= nums.length <= 2500
  • -10^4 <= nums[i] <= 10^4

 

在子序列(连续)和子序列(非连续)的问题中, dp[i] 数组的含义一般都是:以 nums[i] 为结尾的最长xxx,目的是通过比较 2 个子序列的 nums[i]/nums[j] 结尾是否递增

动规5部曲

1、dp数组含义

dp[i]: 以 nums[i] 为结尾的递增子序列最长

2、递推公式

位置 i 的最长升序子序列等于 j 从 0 到 i-1 各个位置的最长升序子序列 +1 的最大值。

所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

注意这里不是要 dp[i] 与 dp[j] + 1 进行比较,而是我们要取 dp[j] + 1 的最大值

3、初始化

由 dp 数组的含义,每个以 nums[i] 为结尾的递增子序列初始长度都为1

4、遍历顺序

从左往右

5、打印dp数组观察

code

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> dp(nums.size());
        //dp[i] : 以nums[i]为结尾的最长递增子序列
        //dp[i] = max(dp[i], dp[j]+1)
        //初始化,每个dp[i]都为1
        for(int i = 0; i < nums.size(); i++){
            dp[i] = 1;
        }

        for(int i = 1; i < nums.size(); i++){
            for(int j = 0; j < i ; j++){
                if(nums[j] < nums[i])
                dp[i] = max(dp[i], dp[j]+1);
            }
        }

        int maxlen = 1;
        for(int i = 0; i<dp.size();i++){
            maxlen = max(maxlen,dp[i]);
        }
        return maxlen;
    }
};

例题2:最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

  • 输入:nums = [1,3,5,4,7]
  • 输出:3
  • 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

示例 2:

  • 输入:nums = [2,2,2,2,2]
  • 输出:1
  • 解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 0 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9

 

 这一题跟上一题很类似,判断条件里加一个 j == i-1 即可,不过也可以进行简化,因为此题用不到 j,判断条件可以简化为:

for (int i = 1; i < nums.size(); i++) {
    if (nums[i] > nums[i - 1]) { // 连续记录
        dp[i] = dp[i - 1] + 1;
    }
}

例题3:最长重复子数组

给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。

示例:

输入:

  • A: [1,2,3,2,1]
  • B: [3,2,1,4,7]
  • 输出:3
  • 解释:长度最长的公共子数组是 [3, 2, 1] 。

提示:

  • 1 <= len(A), len(B) <= 1000
  • 0 <= A[i], B[i] < 100

 

这道题有 2 个整数数组,所以我们使用二维数组来表示 2 个数组的公共最长子数组的长度。

动规5部曲

1、dp数组的含义

参考前两题,dp[i][j] 表示数组 A 中以 A[i-1] 为结尾和在数组 B 中以 B[j-1] 为结尾的最长子数组。

2、递推式

当 A[i-1] == B[j-1] 时,说明以 A[i-1] 和 B[j-1] 结尾的公共最长字数组长度又 +1

dp[i][j] = dp[i-1][j-1] + 1

3、初始化

全初始化为 0 即可

4、打印dp数组

code

class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        //初始化
        vector<vector<int>> dp(nums1.size()+1, vector<int>(nums2.size()+1,0));//前行后列
        int maxlen = 0;
        for(int i = 1; i <= nums1.size(); i++){
            for(int j = 1; j <= nums2.size(); j++){
                if(nums1[i-1] == nums2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }
                maxlen = max(maxlen,dp[i][j]);
            }
        }
        return maxlen;
    }
};

例题4:最长公共子序列

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

  • 输入:text1 = "abcde", text2 = "ace"
  • 输出:3
  • 解释:最长公共子序列是 "ace",它的长度为 3。

示例 2:

  • 输入:text1 = "abc", text2 = "abc"
  • 输出:3
  • 解释:最长公共子序列是 "abc",它的长度为 3。

示例 3:

  • 输入:text1 = "abc", text2 = "def"
  • 输出:0
  • 解释:两个字符串没有公共子序列,返回 0。

提示:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000 输入的字符串只含有小写英文字符。

动规5部曲

这道题其实看起来跟上1题很像,dp[i][j] 代表的仍然是以 A[i-1] 为结尾和在数组 B 中以 B[j-1] 为结尾的最长公共子序列。

不同的是,这道题的dp数组需要保存左边和上面的值,见例:

 所以当两个数组的元素相等时,

dp[i][j] = dp[i-1][j-1] + 1;

 若两个数组的元素不相等,也需要将 前面相同元素的数量 保存到当前

dp[i][j] = max(dp[i-1][j], dp[i][j-1]);

code

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size()+1, vector<int>(text2.size()+1,0));
        //dp数组表示以 i-1 为结尾的数组A 和以 j-1 为结尾的数组B的最长公共子序列
        int maxlen = 0;
        for(int i = 1; i <= text1.size(); i++){
            for(int j = 1; j <= text2.size(); j++){
                if(text1[i-1] == text2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);//两个字符不同时,最长公共子序列长度应该是前一个位置的最大值
                }
                maxlen = max(maxlen,dp[i][j]);
            }
        }
        return maxlen;
    }
};

例题5:不相交的线

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:

  • nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

1035.不相交的线

 

这题跟第5题可谓是一模一样 

例题6:最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

  • 输入: [-2,1,-3,4,-1,2,1,-5,4]
  • 输出: 6
  • 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

 

 动规5部曲

1、dp数组含义

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

2、递推公式

dp[i] 有 2 个来源,一是 从前一个连续的子数组加上本身;二是从当前下标重新开始创建子数组

所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

3、初始化

dp[0] = nums[0]

4、遍历顺序

从左到右

5、举例推导dp数组

 code

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        //dp[i]:表示以 i-1 结尾的连续子数组的最大和为 dp[i]
        int n = nums.size();
        vector<int> dp(n);
        dp[0] = nums[0];
        int maxlen = nums[0];
        for(int i = 1; i < n; i++){
            dp[i] = max(dp[i-1]+nums[i],nums[i]);
            maxlen = max(maxlen,dp[i]);
        }
        return maxlen;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2299981.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenAI 放王炸,将发布整合多项技术的 GPT-5,并免费无限使用,该模型有哪些技术亮点

对于 ChatGPT 的免费用户&#xff0c;将可以无限制地访问 GPT-5&#xff0c;但仅限于标准的智能级别。该级别会设定滥用限制&#xff0c;以防止不当使用(意思就是你得付费嘛)。 OpenAI CEO Sam Altman 今天在 X 上透露了 GPT-4.5 和 GPT-5 的最新发展计划。 OpenAI 将发布代…

C 语言版--销售预测项目案例分享

以下是一个 C 语言销售预测项目案例,该项目模拟根据历史销售数据使用简单的移动平均法来预测未来的销售额。移动平均法是一种常见且基础的时间序列预测方法,它通过计算一定时间段内数据的平均值来预测未来的值。 项目需求 给定一系列历史销售数据,使用简单移动平均法预测下…

DC-7靶机渗透测试全过程

目录 前期准备 一、渗透测试 1.IP地址查询 2.端口地址收集 3.网页信息收集 社工收集信息 Drush直接修改账户密码 下载PHP插件 反弹shell 二、总结 前期准备 攻击机 &#xff1a; kali windows11 靶机&#xff1a; DC-7(调至NAT模式) 一、渗透测试 1.IP地址查询 …

什么是服务的雪崩、熔断、降级的解释以及Hystrix和Sentinel服务熔断器的解释、比较

1.什么是服务雪崩&#xff1f; 定义&#xff1a;在微服务中&#xff0c;假如一个或者多个服务出现故障&#xff0c;如果这时候&#xff0c;依赖的服务还在不断发起请求&#xff0c;或者重试&#xff0c;那么这些请求的压力会不断在下游堆积&#xff0c;导致下游服务的负载急剧…

解决IDEA报错:java 找不到符号

问题&#xff1a;IIDEA编译项目一直报 例如 java: 找不到符号 符号: 方法 getUserId()异常 的错误 解决方法&#xff1a; 1、刷新maven 2、clean package

基于SpringBoot的医院药房管理系统【源码+答辩PPT++项目部署】高质量论文1-1.5W字

作者简介&#xff1a;✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容&#xff1a;&#x1f31f;Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…

Ubuntu22.04通过Docker部署Jeecgboot

程序发布环境包括docker、mysql、redis、maven、nodejs、npm等。 一、安装docker 1、用如下命令卸载旧Docker: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done 2、安装APT环境依赖包…

基于Ubuntu+vLLM+NVIDIA T4高效部署DeepSeek大模型实战指南

一、 前言&#xff1a;拥抱vLLM与T4显卡的强强联合 在探索人工智能的道路上&#xff0c;如何高效地部署和运行大型语言模型&#xff08;LLMs&#xff09;一直是一个核心挑战。尤其是当我们面对资源有限的环境时&#xff0c;这个问题变得更加突出。原始的DeepSeek-R1-32B模型虽…

力扣 66.加一 (Java实现)

题目分析 给定一个数组&#xff0c;可以组成一个数字&#xff0c;将数字加一后&#xff0c;返回新数组 思路分析 首先跟着题目思路走&#xff0c;将数组按位*10可以得到数字&#xff0c;再加一&#xff0c;加一后按位%10&#xff0c;可以得到新的数组。但是此处数字会过大&…

Deep seek学习日记1

Deepseek最强大的就是它的深度思考&#xff0c;并且展现了它的思考过程。 五种可使用Deep seek的方式&#xff08;应该不限于这五种&#xff0c;后续嵌入deepseek的应该更多&#xff0c;多了解一点因为官网容易崩~~&#xff09;&#xff1a; 1.deep seek官网 2.硅基流动silicon…

github用户名密码登陆失效了

问题&#xff1a; git push突然推代码需要登陆&#xff0c;但是用户名和密码正确输入后&#xff0c;却提示403 git push# Username for https://github.com: **** #Password for https://gyp-programmergithub.com: #remote: Permission to gyp-programmer/my-app.git denie…

SpringCloud整合seata,XA、AT、TCC、SAGA模式

参考资料&#xff1a; SpringCloud-Alibaba搭建 SpringCloud-nacos整合 Seata部署 参考demo&#xff08;及学习资料&#xff09; seata官网 参考视频​​​​​c&#xff08;AT模式的UNDO_LOG讲的可能有点问题&#xff0c;但是很通俗易懂&#xff09; 参考视频2&#xff…

案例-06.部门管理-根据ID查询

一.根据ID查询-接口文档 二.根据ID查询-Controller层 package com.gjw.controller;/*** 部门管理Controller*/import com.gjw.anno.Log; import com.gjw.pojo.Dept; import com.gjw.pojo.Result; import com.gjw.service.DeptService; import com.gjw.service.impl.DeptServi…

moveable 一个可实现前端海报编辑器的 js 库

目录 缘由-胡扯本文实验环境通用流程1.基础移动1.1 基础代码1.1.1 data-* 解释 1.2 操作元素创建1.3 css 修饰1.4 cdn 引入1.5 js 实现元素可移动1.6 图片拖拽2.缩放3.旋转4.裁剪 懒得改文案了&#xff0c;海报编辑器换方案了&#xff0c;如果后面用别的再更。 缘由-胡扯 导火…

MongoDB 架构设计:深入解析核心组件与工作原理

MongoDB 架构设计&#xff1a;深入解析核心组件与工作原理 MongoDB 作为一个高性能、易扩展的 NoSQL 数据库&#xff0c;其优秀的架构设计是其成功的关键。本文将深入解析 MongoDB 的架构设计&#xff0c;详细讲解其核心组件和工作原理&#xff0c;帮助您更好地理解和使用 Mon…

【PostgreSQL】PG在windows下的安装

一、准备 通过官网下载安装文件&#xff0c;官方下载路径如下&#xff1a; https://www.postgresql.org/download/windows/ 二、安装 双击postgresql-17.3-1-windows-x64.exe文件&#xff0c;启动安装&#xff0c;进入安装步骤&#xff0c;点击Next 选择PG安装路径&#xff…

Macos机器hosts文件便捷修改工具——SwitchHosts

文章目录 SwitchHosts软件下载地址操作添加方案切换方案管理方案快捷键 检测 SwitchHosts SwitchHosts 是一款 Mac 平台上的免费软件&#xff0c;它可以方便地管理和切换 hosts 文件&#xff0c;支持多种 hosts 文件格式。 软件下载地址 SwitchHosts 操作 添加方案 添加 …

CentOS上安装WordPress

在CentOS上安装WordPress是一个相对直接的过程&#xff0c;可以通过多种方法完成&#xff0c;包括使用LAMP&#xff08;Linux, Apache, MySQL, PHP&#xff09;栈或使用更现代的LEMP&#xff08;Linux, Nginx, MySQL, PHP&#xff09;栈。 我选择的是&#xff08;Linux, Nginx…

【数据结构】 栈和队列

在计算机科学的世界里&#xff0c;数据结构是构建高效算法的基础。栈&#xff08;Stack&#xff09;和队列&#xff08;Queue&#xff09;作为两种基本且重要的数据结构&#xff0c;在软件开发、算法设计等众多领域都有着广泛的应用。今天&#xff0c;我们就来深入探讨一下栈和…

Windows环境搭建ES集群

搭建步骤 下载安装包 下载链接&#xff1a;https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.17.27-windows-x86_64.zip 解压 解压并复制出3份 es-node1配置 config/elasticsearch.yml cluster.name: xixi-es-win node.name: node-1 path.data: D:\\wor…