DeepSeek-R1:强化学习驱动的推理模型

news2025/5/11 17:22:03

        1月20日晚,DeepSeek正式发布了全新的推理模型DeepSeek-R1,引起了人工智能领域的广泛关注。该模型在数学、代码生成等高复杂度任务上表现出色,性能对标OpenAI的o1正式版。同时,DeepSeek宣布将DeepSeek-R1以及相关技术报告全面开源。

技术报告链接:

        https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf

        在这篇技术报告中,DeepSeek团队推出了第一代推理模型DeepSeek-R1-Zero和DeepSeek-R1,通过强化学习(RL)显著增强了模型的推理能力,同时开创了无需监督微调(SFT)即可发展的新路径。

        以下文章将对报告的核心内容进行解读。

DeepSeek-R1-Zero:无需监督微调的强化学习

        DeepSeek-R1-Zero是一个通过强化学习训练的模型,不依赖于监督微调作为初步步骤。具体而言,DeepSeek-AI团队使用了DeepSeek-V3-Base作为基础模型,并使用群组相对策略优化算法 (Group Relative Policy Optimization,GRPO) 作为RL框架来提高模型在推理中的性能。

        在训练过程中,DeepSeek-R1-Zero自然涌现出许多强大且有趣的推理行为,例如自我验证、反思和生成长链推理(chain-of-thought,CoT)。这些行为的出现并非外部调整的结果,而是模型内部的自然发展。如图所示,随着RL训练的进行,DeepSeek-R1-Zero在推理任务中的平均响应长度逐渐增加。这表明模型通过扩展测试时的计算能力,自然地获得了解决越来越复杂的推理任务的能力。这种计算能力的范围从生成数百到数千个推理token,使模型能够更深入地探索和优化其思考过程。

在AIME 2024基准测试中,DeepSeek-R1-Zero的Pass@1得分从15.6%显著提升至71.0%,通过多数投票进一步提高到86.7%,与OpenAI-o1-0912的性能相当。这一成果证明了通过纯RL可以激励LLMs的推理能力,无需依赖SFT。

DeepSeek-R1:多阶段训练与冷启动数据

        尽管DeepSeek-R1-Zero在推理任务上表现出色,但也存在一些问题,如可读性差和语言混用等。为了解决这些问题并进一步提升推理性能,DeepSeek-AI团队推出了DeepSeek-R1。该模型在RL之前引入了少量的冷启动数据,并采用了多阶段训练流程。

        具体来说,团队首先收集了数千条冷启动数据来微调DeepSeek-V3-Base模型,然后执行面向推理的RL。在RL训练接近收敛时,通过拒绝采样生成新的SFT数据,并结合DeepSeek-V3在写作、事实问答和自我认知等领域的监督数据,重新训练DeepSeek-V3-Base模型。最后,经过微调的新检查点再次进行RL训练,考虑所有场景的提示。经过这些步骤,DeepSeek-R1在推理任务上的表现与OpenAI-o1-1217相当。

        在多个基准测试中,DeepSeek-R1模型的表现如下:

  • 教育导向知识基准测试:DeepSeek-R1在MMLU、MMLU-Pro和GPQA Diamond上的表现优于DeepSeek-V3,分别达到了90.8%、84.0%和71.5%的Pass@1得分。
  • 编码相关任务:DeepSeek-R1在Codeforces上的Elo评级达到了2029,超过了96.3%的参赛者,在LiveCodeBench上的Pass@1得分达到了65.9%。
  • 数学任务:DeepSeek-R1在AIME 2024上的Pass@1得分达到了79.8%,在MATH-500上的Pass@1得分达到了97.3%,与OpenAI-o1-1217相当。
  • 其他任务:DeepSeek-R1在AlpacaEval 2.0上的长度控制胜率达到了87.6%,在ArenaHard上的胜率达到了92.3%,显示出其在处理非考试导向查询方面的强大能力。

知识蒸馏:赋予小型模型推理能力

        为了使更高效的小型模型具备类似DeepSeek-R1的推理能力,DeepSeek团队直接微调了Qwen和Llama等开源模型,使用DeepSeek-R1生成的推理数据进行训练。结果表明,这种简单的蒸馏方法显著提升了小型模型的推理能力。例如,DeepSeek-R1-Distill-Qwen-7B在AIME 2024上的表现超过了QwQ-32B-Preview,而DeepSeek-R1-Distill-Qwen-32B在AIME 2024、MATH-500和LiveCodeBench上的表现明显优于以前的开源模型,并可与o1-mini相媲美。

局限性与未来方向

        尽管DeepSeek-R1取得了显著成果,报告中也指出了其现存的挑战:

  • 语言混用问题:DeepSeek-R1当前仅优化了中英双语,对于其他语言的支持有限,可能导致推理和回答时使用不同语言。
  • 任务适应性:DeepSeek-R1在多轮对话、复杂角色扮演和特定格式输出任务中的表现不及DeepSeek-V3。未来研究将探索如何将长链推理扩展至这些任务。
  • 提示敏感性:DeepSeek-R1对提示非常敏感,尤其在多样性较高的任务中,少样本(Few-shot)提示会显著降低模型表现。因此,团队建议用户直接描述问题并使用零样本设置(zero-shot setting)指定输出格式,以获得最佳结果。
  • 软件工程任务的效率问题:由于评估时间长,影响了RL过程的效率,导致DeepSeek-R1并没有表现出比DeepSeek-V3有很大的改进。后续研究团队将计划通过拒绝采样等技术提升训练效率。

结论

        DeepSeek-R1的研究展示了通过强化学习激发语言模型推理能力的巨大潜力。无论是依赖强化学习的自演化过程,还是通过蒸馏实现小模型的推理能力提升,DeepSeek-R1都为推动AI模型的智能化和普及化提供了重要启示。

        未来,随着对多语言支持、任务广度和计算效率的进一步优化,DeepSeek-R1有望在更广泛的场景中发挥作用,为AI驱动的知识探索和决策提供更强大的工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2284380.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

scratch变魔术 2024年12月scratch三级真题 中国电子学会 图形化编程 scratch三级真题和答案解析

目录 scratch变魔术 一、题目要求 1、准备工作 2、功能实现 二、案例分析 1、角色分析 2、背景分析 3、前期准备 三、解题思路 1、思路分析 2、详细过程 四、程序编写 五、考点分析 六、 推荐资料 1、入门基础 2、蓝桥杯比赛 3、考级资料 4、视频课程 5、py…

MyBatis框架基础学习及入门案例(2)

目录 一、数据库建表(tb_user)以及添加数据。 (1)数据库与数据表说明。 (2)字段与数据说明。 二、创建模块(或工程)、导入对应所需依赖坐标。 三、编写MyBatis核心主配置文件。(解决JDBC中"硬编码"问题) (1&…

python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算

【0】基础定义 按位与运算:全1取1,其余取0。按位或运算:全0取0,其余取1。 【1】引言 前序学习进程中,已经对图像按位与计算进行了详细探究,相关文章链接如下: python学opencv|读取图像&…

蓝桥杯省一

四个月从c,cpp,算法一起学到省一(考研原因没参加国赛) 有疑问可以关注私信哦 帖子后续也会持续更新,分享算法竞赛(ccpc,天梯赛,蓝桥杯,浙大pta)相关知识

C++ 新特性实现 ThreadPool

序言 在之前我们实现过线程池,但是非常基础。答题思路就是实现一个安全的队列,再通过 ThreadPool 来管理队列和线程,对外提供一个接口放入需要执行的函数,但是这个函数是无参无返回值的。  参数的问题我们可以使用 bind 来封装&a…

【数据结构】_以SLTPushBack(尾插)为例理解单链表的二级指针传参

目录 1. 第一版代码 2. 第二版代码 3. 第三版代码 前文已介绍无头单向不循环链表的实现,详见下文: 【数据结构】_不带头非循环单向链表-CSDN博客 但对于部分方法如尾插、头插、任意位置前插入、任意位置前删除的相关实现,其形参均采用了…

本地Harbor仓库搭建流程

Harbor仓库搭建流程 本文主要介绍如何搭建harbor仓库,推送本地镜像供其他机器拉取构建服务 harbor文档:Harbor 文档 | 配置 Harbor YML 文件 - Harbor 中文 github下载离线安装包 Releases goharbor/harbor 这是harbor的GitHub下载地址&#xff0c…

环境搭建--vscode

vscode官网下载合适版本 安装vscode插件 安装 MinGW 配置环境变量 把安装目录D:\mingw64 配置在用户的环境变量path里即可 选择用户环境变量path 点确定保存后开启cmd输入g,如提示no input files 则说明Mingw64 安装成功,如果提示g 不是内…

30289_SC65XX功能机MMI开发笔记(ums9117)

建立窗口步骤: 引入图片资源 放入图片 然后跑make pprj new job8 可能会有bug,宏定义 还会有开关灯报错,看命令行注释掉 接着把ture改成false 然后命令行new一遍,编译一遍没报错后 把编译器的win文件删掉, 再跑一遍虚拟机命令行…

IDEA工具下载、配置和Tomcat配置

1. IDEA工具下载、配置 1.1. IDEA工具下载 1.1.1. 下载方式一 官方地址下载 1.1.2. 下载方式二 官方地址下载:https://www.jetbrains.com/idea/ 1.1.3. 注册账户 官网地址:https://account.jetbrains.com/login 1.1.4. JetBrains官方账号注册…

【10.2】队列-设计循环队列

一、题目 设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。 循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普…

多人-多agent协同可能会挑战维纳的反馈

在多人-多Agent协同系统中,维纳的经典反馈机制将面临新的挑战,而协同过程中的“算计”(策略性决策与协调)成为实现高效协作的核心。 1、非线性与动态性 维纳的反馈理论(尤其是在控制理论中)通常假设系统的动…

HarmonyOS简介:应用开发的机遇、挑战和趋势

问题 更多的智能设备并没有带来更好的全场景体验 连接步骤复杂数据难以互通生态无法共享能力难以协同 主要挑战 针对不同设备上的不同操作系统,重复开发,维护多套版本 多种语言栈,对人员技能要求高 多种开发框架,不同的编程…

Edge-TTS在广电系统中的语音合成技术的创新应用

Edge-TTS在广电系统中的语音合成技术的创新应用 作者:本人是一名县级融媒体中心的工程师,多年来一直坚持学习、提升自己。喜欢Python编程、人工智能、网络安全等多领域的技术。 摘要 随着人工智能技术的快速发展,文字转语音(Te…

2025课题推荐——USBL与DVL数据融合的实时定位系统

准确的定位技术是现代海洋探测、海洋工程和水下机器人操作的基础。超短基线(USBL)和多普勒速度计(DVL)是常用的水下定位技术,但单一技术难以应对复杂环境。因此,USBL与DVL的数据融合以构建实时定位系统&…

RK3588平台开发系列讲解(ARM篇)ARM64底层中断处理

文章目录 一、异常级别二、异常分类2.1、同步异常2.2、异步异常三、中断向量表沉淀、分享、成长,让自己和他人都能有所收获!😄 一、异常级别 ARM64处理器确实定义了4个异常级别(Exception Levels, EL),分别是EL0到EL3。这些级别用于管理处理器的特权级别和权限,级别越高…

MyBatis最佳实践:提升数据库交互效率的秘密武器

第一章:框架的概述: MyBatis 框架的概述: MyBatis 是一个优秀的基于 Java 的持久框架,内部对 JDBC 做了封装,使开发者只需要关注 SQL 语句,而不关注 JDBC 的代码,使开发变得更加的简单MyBatis 通…

Three.js实战项目02:vue3+three.js实现汽车展厅项目

文章目录 实战项目02项目预览项目创建初始化项目模型加载与展厅灯光加载汽车模型设置灯光材质设置完整项目下载实战项目02 项目预览 完整项目效果: 项目创建 创建项目: pnpm create vue安装包: pnpm add three@0.153.0 pnpm add gsap初始化项目 修改App.js代码&#x…

1月27(信息差)

🌍喜大普奔,适用于 VS Code 的 GitHub Copilot 全新免费版本正式推出,GitHub 全球开发者突破1.5亿 🎄Kimi深夜炸场:满血版多模态o1级推理模型!OpenAI外全球首次!Jim Fan:同天两款国…

开发环境搭建-3:配置 nodejs 开发环境 (fnm+ node + pnpm)

在 WSL 环境中配置:WSL2 (2.3.26.0) Oracle Linux 8.7 官方镜像 node 官网:https://nodejs.org/zh-cn/download 点击【下载】,选择想要的 node 版本、操作系统、node 版本管理器、npm包管理器 根据下面代码提示依次执行对应代码即可 基本概…